

Printed Pages: 3

AN 21 4

TEC101

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 3033 Roll No.

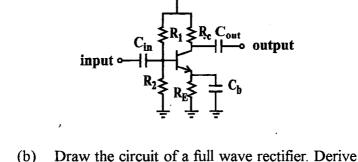
B.Tech

(SEM I) ODD SEMESTER THEORY EXAMINATION 2009-10 ELECTRONICS ENGINEERING

Time: 3 Hours] [Total Marks: 100

Note: Attempt all the questions.

- 1 Attempt any two parts of the following: 10×2=20
 - (a) With a neat energy band diagram, explain the working of a p-n junction diode in reverse bias.
 - (b) Draw the forward characteristics of a p-n junction diode and explain its:
 - (i) static resistance
 - (ii) dynamic resistance and
 - (iii) average a.c. resistance.
 - (c) Name the capacitances associated with a p-n junction diode and explain the causes and dependence of these capacitances.


Attempt any two parts of the following:

aktuonline.com

2

aktuonline.com

 $10 \times 2 = 20$

- the expression for its ripple factor.

 (c) Draw the output waveform of a full wave
- rectifier and compare its performance with

 (i) C filter (ii) LC filter.
- 3 Attempt any two parts of the following: 10×2=20

 (a) Draw the BJT circuits for CB, CC and CE
 - configurations. Compare Z_i , Z_o , A_V and A_I for the above configurations.
 - (b) Draw the circuit of a BJT in CE configuration employing voltage divider biasing. Calculate its stability against I_{CO} .
 - (c) Using a low frequency hybrid model, calculate A_I and A_I of a 2 stage RC coupled BJT amplifier.

JJ-3033]

[Contd...

Attempt any two parts of the following: 10×2=:

(a) With a neat sketch, explain the working of an

- (a) With a neat sketch, explain the working of an n-channel JFET.
- (b) With a neat sketch, explain the working of a p-channel depletion mode MOSFET.
- (c) Draw the circuit of a JFET amplifier in all the three configurations. Compare A_V , A_I , Z_i , Z_o for all of them.

Attempt any two parts of the following: 10×2=20

- (a) (i) Convert
- FE φ A_{hex} into Decimal 7650 octal into hex 11010110 binary into octal.
 - (ii) Draw the circuit of a 2 input EX-OR gate using four 2 input NAND gates.
- (b) Minimise the following K-Map:

AB CD	00	01	11	10
00			1	
01	1	1	1	
11		1	1	1
10		1		

(c) Draw an op-amp based circuit to give $V_0 = V_1 + V_2 + V_3$.