Printed pages: 02 Sub Code: NAS 103

Paper ID: 1 9 9 1 2 3

Roll No.

B. TECH. (SEM. I) THEORY EXAMINATION 2018-19 ENGINEERING MATHEMATICS -I

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all sections. If require any missing data; then choose suitably.

SECTION - A

1. Attempt <u>ALL</u> the parts:

(2x10 = 20)

- (a) Find y_n , if $y = \sin^2 x$ at x = 0.
- **(b)** If $u(x,y) = (\sqrt{x} + \sqrt{y})^5$, find the value of $x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2}$.
- (c) Calculate $\frac{\partial(u,v)}{\partial(x,y)}$ for $x = e^u \cos v$, and $y = e^u \sin v$.
- (d) Prove that $f(ax) = f(x) + (a-1)xf'(x) + \frac{(a-1)^2x^2}{2!}f''(x) + \frac{(a-1)^3x^3}{3!}f'''(x) + \cdots$
- (e) Reduce the matrix $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$ into normal form.
- (f) Find the inverse of the matrix $A = \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$.
- (g) Find the value of $\int_0^\infty x^{\frac{1}{4}} e^{-\sqrt{x}} dx$.
- **(h)** Evaluate $\int_0^1 \int_0^{x^2} x e^y dy dx$.
- (i) Show that $\vec{F} = (x^2 y^2 + x)\hat{\imath} (2xy + y)\hat{\jmath}$ is irrotational.
- (j) State Gauss divergence theorem.

SECTION - B

2. Attempt any **THREE** of the following:

(10x3=30)

- (a) If $y = \sin(a \sin^{-1} x)$, show that $(1 x^2)y_{n+2} (2n+1)xy_{n+1} (n^2 a^2)y_n = 0 \text{ and calculate } y_n(0).$
- (b) Find the volume of the largest rectangular parallelepiped that can be inscribed in the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1.$
- (c) Diagonalise the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$.
- (d) Find the volume of the solid surrounded by the surface $\left(\frac{x}{a}\right)^{\frac{2}{3}} + \left(\frac{y}{b}\right)^{\frac{2}{3}} + \left(\frac{z}{c}\right)^{\frac{2}{3}} = 1$.
- (e) Verify Stoke's theorem for $\vec{F} = x^2\hat{\imath} + xy\hat{\jmath}$ integrated round the square whose sides are x = 0, y = 0, x = a, y = a in the plane z = 0.

SECTION - C

3. Attempt any **TWO** of the following:

(5x2=10)

- (a) Verify Euler's theorem for the function: $u = \frac{x^2y^2}{x+v}$
- **(b)** If u = f(y z, z x, x y), prove that $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z} = 0$.
- (c) Trace the curve: $y^2 = x^3$.
- **4.** Attempt any **TWO** of the following:

(5x2=10)

- (a) Expand $\tan^{-1} \frac{y}{x}$ in powers of (x-1) and (y-1) upto two degree terms.
- **(b)** Show that $u = \frac{x+y}{z}$, $v = \frac{y+z}{x}$, $w = \frac{y(x+y+z)}{xz}$ are not independent, find the relation among them.
- (c) Find the extreme values of $3x^2 y^2 + x^3$.
- **5.** Attempt any **TWO** of the following:

(5x2=10)

- (a) Show that the system of equations: x + 3y - 2z = 0, 2x - y + 4z = 0, x - 11y + 14z = 0 has a non-trivial solution.
- **(b)** Verify Cayley-Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$ and hence find A^{-1} .
- (c) Prove that the each characteristic roots of a unitary matrix are of unit modulus.
- **6.** Attempt any <u>TWO</u> of the following:

(5x2=10)

- (a) Evaluate $\int_0^a \int_y^a \frac{x \, dx \, dy}{x^2 + y^2}$ by changing the order of integration.
- **(b)** Prove that $\int_0^1 \frac{dx}{\sqrt{1+x^4}} = \frac{1}{4\sqrt{2}} B\left(\frac{1}{4}, \frac{1}{2}\right)$.
- (c) Show that in the Catenary $y = c \cosh \frac{x}{c}$, the length of arc from the vertex x = 0 to any point (x, y) is given by $s = c \sinh \frac{x}{c}$.
- 7. Attempt any \underline{TWO} of the following:

- (a) Find the directional derivative of $\emptyset = 5x^2y 5y^2z + \frac{5}{2}z^2x$ at the point P(1,1,1) in the direction of the line $\frac{x-1}{2} = \frac{y-3}{-2} = \frac{z}{1}$.
- **(b)** Prove that $div(\vec{a} \times \vec{b}) = \vec{b}$. $curl \vec{a} \vec{a}$. $curl \vec{b}$
- (c) Apply Green's theorem to evaluate $\int_C \left[(2x^2 y^2)dx + (x^2 + y^2)dy \right]$ where C is the boundary of the area enclosed by the x - axis and upper half of the circle $x^2 + y^2 = a^2$.