Printed Pages: 4

AS-101

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 199101

Roll No.

B. Tech.

(SEM. I) (ODD SEM.) THEORY EXAMINATION, 2014-15

MATHEMATICS - I

Time: 3 Hours]

[Total Marks: 100

Note:

- (1) Attempt all questions.
- (2) All questions carry equal marks.
- 1 Attempt any **two** of following:

(a) If
$$y = \left(\sinh^{-1} x\right)^2$$
, prove that
$$\left[\left(1 + x^2\right) y_{n+2} + \left(2n + 1\right) x y_{n+1} + x^2 y_n = 0 \right].$$

(b) If
$$u = x \sin^{-1} \left(\frac{x}{y}\right) + y \sin^{-1} \left(\frac{y}{x}\right)$$
 find the

value of
$$\left[x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} \right]$$

199101]

1

[Contd...

(c) If
$$u = x^2 + y^2 + z^2 - 2xyz = 1$$
, show that

$$\frac{dx}{\sqrt{1-x^2}} + \frac{dy}{\sqrt{1-y^2}} + \frac{dz}{\sqrt{1-z^2}} = 0$$

- 2 Attempt any two parts of following:
 - (a) Trace the curve $r = a(1 + \cos \theta)$.
 - (b) Find the approximate value of

$$\left[\left(0.98 \right)^2 + \left(2.01 \right)^2 + \left(1.94 \right)^2 \right]^{1/2}$$

(c) If $x = e^u \cos v$, $y = e^u \sin v$ then find

$$\frac{\partial (u,v)}{\partial (x,y)}.$$

- 3 Attempt any two parts of following:
 - (a) Evaluate $\int_{0}^{3} \int_{0}^{6/x} x^{2} dy dx$ by changing the order of integration.

- (b) Find the area enclosed by curves $y^2 = 4ax$ and $x^2 = 4ay$.
- (c) Prove that

$$\beta(m,n) = a^m b^m \int_0^\infty \frac{x^{m-1}}{(ax+b)^{m+n}} dx.$$

- 4 Attempt any two parts of following:
 - (a) Find ϕ if

$$\nabla \phi = \left[\left(y^2 - 2xyz^3 \right) \hat{i} + \left(3 + 2xy - x^2z^3 \right) \hat{j} + \left(6z^3 - 3x^2yz^2 \right) \hat{k} \right]$$

(b) Evaluate by Green's theorem $\oint_C \left[(\cos x \sin y - 2xy) dx + \sin x \cos y \ dy \right]$

where C is circle
$$x^2 + y^2 = 1$$

- (c) Verify Stoke's theorem for $\overrightarrow{F} = \left(y \stackrel{\wedge}{i} + z \stackrel{\wedge}{j} + x \stackrel{\wedge}{k} \right)$ where S is upper half surface of sphere $x^2 + y^2 + z^2 = 1$ and C is its boundary.
- 199101]

- 5 Attempt any two parts of following:
 - (a) Find non-singular matrices P and Q such that P and Q is in normal form of the matrix and hence find the rank of matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & -2 \\ 2 & -2 & 1 & 3 \\ 3 & 0 & 4 & 1 \end{bmatrix}.$$

(b) Solve following system of equations:

$$2x_1 + 3kx_2 + (3k + 4)x_3 = 0$$

$$x_1 + (k + 4)x_2 + (4k + 2)x_3 = 0$$

$$x_1 + 2(k + 1)x_2 + (3k + 4)x_3 = 0$$

(c) Find the eigen values and corresponding eigen

vectors of matrix
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
.