Pri	nted]	Pages	: 7									E	EE	201
(Fo	llowin	g Pap	er ID a	nd Roll No.	to b	e fill	led	in	you	r A	nsw	er E	300	k)
PA	PER	ID:	2302	Roll No.			_							
				B. 7	[ech	•								
	((SEM	.II) T	HEORY E	XAN	ΛIN	A	ПО	N 2	201	0-1	1		
			ELEC	CTRICAL	EN	GIN	Œ	ER	IN	G ·				
Tim	ie=: 3	Hours							То	tal	Mo	ırks	:	100
		ľ	Note:	- ALL sec	etion	s aı	е	con	npu	lso	ry.			
				SECT	ION	A								
1.		part: ks :—		compulso	ry.	All	q	ues	tio	ns		-	-	ual 20
	(a) The power consumed in a							uct	ive	cir	cui	t w	ill I	e:
		(i)	vi co	os θ		(ii)	vi s	sin	θ				
		(iii)	vi			(iv	')	non	e c	of t	hes	e	<u>.</u>	ŝ
	(b) An ideal voltage source should have:													
	-	(i)	large	e.m.f.		(ii)	sma	all (e.m	.f.	,		
		(iii)	zero	resistance		(iv	')	non	e c	of t	hes	e		
	(c)	c) Superposition theorem is applicable for :												
		(i)	Linea	ar circuits o	only									
a,*		(ii)	Non-	linear circu	iits c	nly				÷				

(d) The current through a series RLC circuit under resonance condition will be

(iii) Linear and non-linear circuits both

(i) V/R

(iv) None of these

(ii) V/X_c

(iii) V/X₁

(iv) None of these

(e)	For a 3-phase load balanced condition, each phase has								
	the	same value of	•••••••••••••••••••••••••••••••••••••••						
	(i)	impedance	(ii) resistance						
•	(iii)	power factor	(iv) all of these						
(f)	The is an integrating type instrument.								
	(i)	Moving iron ammeter							
	(ii)	Moving coil voltmeter							
•	(iii)	ii) Dynamometer wattmeter							
	(iv)	Induction type ene	ergy meter						
(g)	When voltage is transferred from primary to secondary								
	then	it is	•• •						
*	(i)	multiplied by K ²	(ii) multiplied by K						
. •	(iii)	divided by K ²	(iv) divided by K						
(h)	Stray losses are sum of:								
	(i)	Iron and mechanical losses							
٠	(ii)	Copper and iron losses							
	(iii)	(iii) Copper and mechanical losses							
	(iv)	None of these							
(i)	If N	s is the synchronou	is speed, N is the rotor speed						
		S is the slip then the							
		$N_{s} = (1 - S)N$	· ·						
	(iii)	$N = (S - 1)N_{S}$	(iv) None of these						
(j)	An electrical installation is earthed for:								
	(i)	safety to personne	1						
	(ii)	fire protection							
	(iii)	protection against	electric shock						
	(iv)	all of these							

SECTION—B

- Attempt any THREE parts of the following. All questions carry equal marks:—

 10×3=30
 - (a) Write the statement of Norton's theorem and discuss it with help of example.

A network has the configuration shown in Fig. 1. All resistance values are expressed in ohms.

- (i) Find the current through R_L when it takes on values of 10, 50, and 200 Ω using Thevenin's theorem.
- (ii) Determine the value of R_L corresponding to which there a maximum power is transferred to the load resistor. Compute this maximum power.

Fig. 1

- (b) How are settling time and time constant related in a first-order linear circuit? Also derive the step response of (i) R₁ series circuit (ii) R₂ series circuit.
- (c) Explain the working of a transformer with the derivation of the e.m.f. equation for a transformer. Also discuss the losses in the transformer.

(d) Derive the expression of torque for D.C. Motor. Also discuss the characteristics of D.C. shunt motor.

A 6 pole lap wound D.C. generator has 720 conductors; a flux of 80 m weber/pole is driven at 1000 rpm. Find the generated e.m.f.

SECTION—C

Note:—All questions are compulsory. All questions carry equal marks. 10×5=15

- 3. Attempt any TWO parts of the following. All questions carry equal marks:—
 - (a) Derive the expression for Q-factor in the R-L-C- parallel circuit.
 - (b) Define power factor. Also discuss the reasons for low power factor and ways to improve it.
 - (c) In Fig. 2 compute the voltage required between terminal a-b so that a voltage drop of 45 V occurs across 15 ohm resistor.

Fig. 2

- 4. Attempt any TWO parts of the following. All questions carry equal marks:—
 - (a) Discuss the construction and working principle of PMMC type measuring instruments.
 - (b) Explain the two wattmeter method to determine the power in three phase system.
 - (c) For the given circuit find the (1) Line currents (2) Phase currents and (3) Power consumed.

Fig. 3

- 5. Attempt any TWO parts of the following. All questions carry equal marks.
 - (a) Derive the expression for efficiency of transformer.

 Also find out the condition of maximum efficiency.
 - (b) Explain the slip-torque characteristics of three phase induction motor.

- (c) Discuss the principle of operation of a single phase induction motor. Also write its applications.
- 6. Attempt any TWO parts of the following. All questions carry equal marks:—
 - (a) Describe the working principle of d.c. series motor and draw its various characteristics.
 - (b) Discuss the working principle of a three-phase synchronous machine. Also differentiate synchronous motor from induction motor.
 - (c) Explain the squirrel cage rotor and phase wound rotor in induction motor.
- 7. Attempt any TWO parts of the following. All questions carry equal marks.
 - (a) Explain the analogy between electric and magnetic circuit with AC excitation. Also determine the power factor for the given circuit in Fig. 4.

Fig. 4

- (b) Discuss the following:—
 - (i) Form factor, peak factor, permeability, flux density.
 - (ii) Use of shunt and multipliers in measuring instruments.
- (c) Describe the basic fundamentals of standard transmission and distribution of voltages. Also briefly discuss the concept of grid.