Printed Pages: 4

EC201/EEC201

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 199214

Roll No.

B. Tech.

(SEM. II) THEORY EXAMINATION, 2014-15 **ELECTRONICS ENGINEERING**

Time: 3 Hours]

[Total Marks: 100

Note:

- (1) Attempt all questions.
- (2) All questions carry equal marks.
- 1 Attempt **any four** parts of the following:

 $5 \times 4 = 20$

- (a) With the help of the circuit diagram explain the working of voltage doubler circuit.
- (b) For the network of Fig. 1, determine the range of V_i that will maintain V_L at 8 V and not exceed the maximum power rating of the Zener diode.

Fig.1

(c) Determine V_0 for the given network shown in Fig.2

Fig.2

- (d) Write short notes on Tunnel Diode with necessary diagram.
- (e) Find out the ripple factor and efficiency of full wave Bridge rectifier.
- (f) Sketch V_{θ} for the given network shown in Fig. 3 for the input shown.

2 Attempt **any four** parts of the following:

 $5 \times 4 = 20$

- (a) Draw the input and output characteristics of CB npn transistor configuration with proper labels.
- (b) For the common emitter amplifier configuration using Hybrid equivalent model, determine Z_i, Z_o, A_v
- (c) Derive the stability factor $S(\beta)$ for the emitter bias configuration.
- (d) Find out I_C , I_E , V_{CE} of the fig 4.
- (e) Explain with necessary diagram how BJT works as switch
- (f) What is a well-designed voltage divider biasing circuit? Explain.

3 Attempt any four parts of the following.

 $5 \times 4 = 20$

- (a) Define Op-Amp with the help of block diagram. Also describe the ideal characteristics of IC-741.
- (b) Explain:
 - (i) Differentiator circuit using Op-Amp.
 - (ii) Unity gain amplifier using Op-Amp.
- (c) For the network of Fig. 5, V_D =9 V. Determine I_D , V_{GS} , V_{DS} , V_p
- (d) Explain the construction and working of n channel enhancement type MOSFET.
- (e) Explain how FET used as Voltage Variable Resistance?
- (f) Find out the output voltages of the Fig.6.

- 4 Attempt **any two** parts of the following: 10×2=20
 - (a) Explain the basic principle of digital voltmeter with the help of block diagram.
 - (b) Explain how frequency and phase can be measured using CRO.
 - (c) Draw a neat block diagram of a cathode ray oscilloscope with proper labels. Also explain its working principle.
- 5 Attempt **any two** parts of the following: 10×2=20
 - (a) Simplify the following expression using K-map and implement the output using universal logic gates.

$$F(A,B,C,D) = \sum M(1,3,4,6,8,9,13,15) + \sum d(0,2,14)$$

- (b) Simplify the following expression using Boolean algebra
 - (i) F = AB + A(B+C) + B(B+C)
 - (ii) $F = A\overline{BCD} + \overline{ABD} + BC\overline{D} + \overline{AB} + B\overline{C}$
- (c) (i) Add and Subtract without converting their base of the following two Hexadecimal numbers, A4FB and 3FDC.
 - (ii) What are universal gates? Implement two inputs XOR gate using only 4 NAND Gates.
 - (iii) Convert the Binary number $(101011001110011)_2$ to a Gray number. Also convert Gray number $(111001100011)_{\rm Gray}$ to Binary number.