Printed Pages: 4

EBT201

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 154204

Roll No.

B. Tech.

(SEM. II) THEORY EXAMINATION, 2014-15

ELEMENTARY MATHEMATICS-II

Time: 3 Hours [Total Marks: 100

Note: Attempt all questions.

SECTION - A

1 Attempt all parts of the following:

 $10 \times 2 = 20$

[Contd...

- (a) Solve: $x^2 x + 2 = 0$
- (b) Solve for real $x: \frac{3(x-2)}{5} \le \frac{5(2-2)}{3}$
- (c) If ${}^{n}C_{9} = {}^{n}C_{8}$, find ${}^{n}C_{17}$.
- (d) How many terms of the A.P. -6, $-\frac{11}{2}$, -5, are needed to give the sum -25.
- (e) Write the equation of a line passing through the point $\left(-4,3\right)$ with slope $\frac{1}{2}$.
- 154204] 1

- (f) Find the radius and centre of the circle $x^2 + y^2 8x + 10y 12 = 0$.
- (g) Find $\overrightarrow{a} \times \overrightarrow{b}$ if $\overrightarrow{a} = \overrightarrow{i} 5 \overrightarrow{j} + 3 \overrightarrow{k}$ and $\overrightarrow{b} = 3 \overrightarrow{i} + 4 \overrightarrow{j} 2 \overrightarrow{k}$.
- (h) Find the projection of the vector $\overrightarrow{a} = 2 \overrightarrow{i} + 3 \overrightarrow{j} 2 \overrightarrow{k}$ on the vector $\overrightarrow{b} = \overrightarrow{i} + 2 \overrightarrow{j} + \overrightarrow{k}$.
- (i) If the line has direction ratios 2, -1, -2, determine its direction cosines.
- (j) Find the direction cosines of a vector $\overrightarrow{AB} = 3 \hat{i} + 4 \hat{j} + 5 \hat{k}$.

SECTION - B

- 2 Attempt any three parts of the following: $3\times10=30$
 - (a) Solve the following system of inequalities graphically $x-2y \le 3$, $3x+4y \ge 12$, $x \ge 0$, $y \ge 1$.
 - (b) Find the sum to n terms of the series : 5 + 11 + 19 + 29 + 41
 - (c) Find the equation of the circle passing through the points (-5, 4) and (7, -2) whose centre lies on the line 3x+4y=7.
 - (d) Find the unit vector perpendicular to each of the vector $\overrightarrow{a} + \overrightarrow{b}$ and $\overrightarrow{a} \overrightarrow{b}$ where $\overrightarrow{a} = 3 \stackrel{\wedge}{i} + 2 \stackrel{\wedge}{j} + 2 \stackrel{\wedge}{k}$ and $\overrightarrow{b} = \stackrel{\wedge}{i} + 2 \stackrel{\wedge}{j} 2 \stackrel{\wedge}{k}$.

(e) Find the equation of the plane through the line of intersection of the planes x+y+z=1 and 2x+3y+4z=5, which is perpendicular to the plane x-y+z=0.

SECTION - C

Note: Attempt any two parts from each question. $(2\times5)\times5=50$ All questions are compulsory.

3 (a) Solve:
$$x^2 + x + \frac{1}{\sqrt{2}} = 0$$

- (b) Solve the inequality and show the graph of the solution on the number line 3(1-x) < 2(x+4)
- (c) Solve: $-3x+2y \ge -6$ graphically.
- 4 (a) Find the value of n such that ${}^{n}P_{5} = 42 {}^{n}P_{2}, n > 4$
 - (b) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
 - (c) How many terms of the G.P. $3, \frac{3}{2}, \frac{3}{4}$ are needed to

give the sum
$$\frac{3069}{512}$$
 ?

154204]

3

[Contd...

- 5 (a) Find the equation of the line passing through (-3, 5) and perpendicular to the line through the point (2, 5) and (-3, 6).
 - (b) Find the coordinates of the focus, axis, the equation of the directrix and latus rectum of the parabola $v^2 = 8 x$.
 - (c) Find the equation of the ellipse whose vertices are $(0,\pm 13)$ and foci are $(0,\pm 5)$.
- 6 (a) Find the vector in the direction of a vector $\hat{i} 2\hat{j} + 3\hat{k}$ that has magnitude 13 units.
 - (b) Show that the points $A(3\hat{i}-4\hat{j}-4\hat{k})$, $B(2\hat{i}-\hat{j}+\hat{k})$ and $C(\hat{i}-3\hat{j}-5\hat{k})$ are the vertices of a right angled triangle.
 - (c) Find the area of the parallelogram whose adjacent sides are determined by the vectors $\overrightarrow{a} = \widehat{i} \widehat{j} + 3\widehat{k}$ and $\overrightarrow{b} = 2\widehat{i} 7\widehat{j} + \widehat{k}$.
- 7 (a) Find the direction cosines of the line passing through the points (-2, 4, -5) and (1, 2, 3).
 - (b) Find the Cartesian equation of the line which passes through the point (-2, 4, -5) and parallel to the line give by $\frac{x+3}{3} = \frac{y-4}{5} = \frac{3+8}{6}$
 - (c) Find the angle between the planes 2x + y 2z = 5 and 3x 6y 2z = 7 using vector method.

1