Printed Pages: 2

AS-202(E)

(Following Paper ID and Roll No. to be filled in your Answer Book)									
PAPER ID: 1217	Roll No.								

B. Tech.

(For EC/EE/EN/EI/ET/EX/EL/IE/IC/IN)

(Semester II) Even Semester Theory Examination, 2012-13

ENGINEERING PHYSICS-II(E)

Time: 3 Hours] [Total Marks: 80

Note: Attempt questions from each Section as per instructions.

Section-A

Attempt *all* parts of this question. Write answer of each part in short. Each part carries 2 marks. $2 \times 8 = 16$

- 1. (a) What do you understand by wave packet?
 - (b) Explain, why electron can not reside inside nucleus?
 - (c) What is Meissner effect?
 - (d) What is dielectric loss?
 - (e) What do you mean by coercivity?
 - (f) What is the importance of Hall effect?
 - (g) What is enthalpy?
 - (h) Define material dispersion.

Section-B

Attempt any three parts of this question. Each part carries 8 marks. 8×3=24

- 2. (a) Calculate the de-Broglie wavelength associated with a proton moving with a velocity equal to one-twentieth of the velocity of light.
 - (b) The critical fields at 6K and 8K for NbTi alloys are 7.616 and 3.284 MA/m respectively. Calculate the transition temperature and the critical field at 0K.
 - (c) Calculate the electronic polarizability of argon atom at NTP, the dielectric constant of argon is 1.0024 and its atomic density is 2.7×10^{25} atoms/m³.
 - (d) The compressor of an air expansion machine intakes air at 1 atmosphere and releases at 5 atmosphere pressure. Calculate the coefficient of performance of the machine. If the power necessary to derive the machine is 1.5 H.P., find the amount of heat removed per minute. γ for air is 1.4.

(1) **P. T. O.**

3.

(e) A glass clad fiber is made with the core glass of refractive index 1.5 and the cladding is doped to give a fractional index difference of 0.005. Calculate (i) the refractive index of cladding, (ii) the critical angle, (iii) the acceptance angle, and (iv) the Numerical Aperture.

Section-C

Attempt all questions of this Section. Each question carries 10 marks. 8×5=40 Attempt any one part of the following:

- (a) What are phase and group velocity? Establish a relation between them in term of frequency.
- (b) A particle is moving along a line between x=0 and x-a with zero potential energy. At point for which x<0 and x>a, the potential energy is infinite. Solving Schrödinger's equation, obtain the energy, eigenvalues and the normalized wave function for the particle.
- 4. Attempt any one part of the following:
 - (a) What do you mean by superconductivity? Explain the BCS theory of super conductors and give some applications of super conductors.
 - (b) What are nano materials? Discuss preparation technique and properties of Buckyball.
- 5. Attempt any one part of the following:
 - (a) Discuss frequency dependence of dielectric constant. What is relaxation time?
 - (b) What is diamagnetism? Show that susceptibility of diamagnetic material is negative and independent of temperature.
- 6. Attempt any one part of the following:
 - (a) What is Fermi energy? Show how this energy depends on the density of electron gas.
 - (b) Explain the theory of Joule-Thomson regenerative cooling. How can you obtain liquid helium by its application?
- 7. Attempt any one part of the following:
 - (a) Describe the working of a rotatory oil pump for producing low pressure. How are these pressure measured?
 - (b) What are optical fibers? Describe classification of these fibers with refractive index profile.

Physical Constants:

Speed of light $c = 3.0 \times 10^8$ m/s, Planck's constant $h = 6.62 \times 10^{-34}$ J-s Mass of electron $m = 9.1 \times 10^{-31}$ kg, Mass of proton $m_p = 1.67 \times 10^{-27}$ kg.

Permeability $\mu_0 = 4\pi \times 10^{-7}$ H/m, Permittivity $\epsilon_0 = 8.854 \times 10^{-12}$ F/M.

1217

(2)

25,000