Sub Code: KCE303

Paper Id: 100323 Roll No:

B. TECH (SEM-III) THEORY EXAMINATION 2019-20 FLUID MECHANICS

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections, If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 \approx 20$

Qno.	Question	Marks	co
a.	Define weight density.	2	1
b.	Define Piezometer with neat sketch.	2	1
c.	What are stream tube?	2	2
d.	What do you understand by Rate of flow?	2	2
e.	Write practical application of Bernoulli's equation.	2	3
f.	Draw the neat sketch of venutrimeter.	2	3
g.	Define stokes's Law.	2	4
h.	Distinguish between ratational and irrotaional flow.	2	4
i.	What are the Magnus effects?	2	5
j .	What is flow separation?	2	5 3

SECTION B

2. Attempt any three of the following:

 $3 \times 10 = 30$

Qno.	Question	Marks	co
a.	Given that: Barometer reading =740 mm of mercury, specific gravity of mercury =13.6, intensity of pressure =40 kPa. Express the intensity of pressure in S.I. units, both gauge and absolute.	10	1
b.	Sketch the velocity distribution for uniform irrotational flow,	10	2
c.	Find an expression for the discharge over a rectangular notch in terms of head of water over the crest of the notch.	10	3
d.	Prove that viscous flow through a circular pipe the kinetic energy correction factor equal to 2.	10	4
e.	Give and explain the five errors in CFD and give examples. How can they be determined and reduced?	10	5

SECTION C

3. Attempt any one part of the following:

 $1 \times 10 = 10$

Qno.	Question	Marks	CO
a.	A crude oil of viscosity 0.97poise and relative density= 0.9 is flowing through a horizontal circular pipe of diameter 100mm and length 10m. Calculate the difference of pressure at two of the pipe, if 100kg of the oil is collected in tank in 30seconds.		1
b.	Explain briefly the following types of equilibrium of floating bodies (i) Stable Equilibrium (ii) Unstable Equilibrium (iii) Neutral Equilibrium	10	1

Paper Id: 100323

Roll No:		T	1 1	
	 1		 	

4. Attempt any one part of the following:

 $1 \times 10 = 10$

Sub Code: KCE303

Qno.	Question .	Marks	СО
a.	Write examples of viscous flow and explain the characteristics of Laminar flow.	10.	2
b.	Find the velocity and acceleration at a pont (1,2,3) after 1 sec. for a three dimensional flow given by u=yz+t, v=xz-t, w=xy m/s	10	2

5. Attempt any one part of the following:

 $1 \times 10 = 10$

Qno.	Question	Marks	co
а.	A horizontal pipe of diameter 450 mm is suddenly contracted to a diameter of 200 mm. The pressure intensities in the large and smaller pipe is given as 13.734N/cm ² and 11.774 N/cm ² respectively. Find the loss of head due to contraction if C _c =0.62. Also determine the rate of flow of water.	10	3
b.	Derive an expression for the power transmission through the pipes. Find also the condition of power and corresponding efficiency of transmission	10	3

6. Attempt any one part of the following:

 $1 \times 10 = 10$

Qno.	Question	Marks	CO
a.	If velocity distribution in laminar boundary layer a flat plate is assumed to be given by second order polynomial u=a+by+cy². Determine its form using the necessary boundary conditions.		4
b.	Prove that in case of force vortex, the rise of liquid level at the ends is equal to the full liquid level at the axis of rotation.	10	4

7. Attempt any one part of the following:

 $1 \times 10 = 10$

Qno.	Question	Marks	co
a.	What is meant by geometric, kinematic and dynamic similarities? Are these similarities truly attainable? If is not why?	10	
b.	A 1:40 model of ocean tanker is dragged through fresh water at 2m/s with total measured drag of 117.7 N. The skin (frictional) drag coefficient 'f' for model and prototype are 0.3 and 0.02 respectively in the equation R _f =fAV ² . The water surface area of the model is 25m ² . Taking the densities for the prototype and the model as 1030 kg/m ³ and 1000 kg/m ³ respectively, Determine (i) The total drag on the prototype (ii) Power required to drive the prototype:	10	