Printed Pages: 4

ECH401

(Following Paper ID and Roll No. to be filled in your Answer Book)										
PAPER ID : 151405										
Roll No.										

B. Tech.

(SEM. IV) THEORY EXAMINATION, 2014-15

CHEMICAL ENGINEERING THERMODYNAMICS

Time: 3 Hours] [Total Marks: 100

- Note-(1) Assume suitable data if missing
 - (2) Use of steam table is allowed
- 1 Attempt any four parts of the following: $[5\times4=20]$
 - (a) An ideal gas at 2500 KPa is throttled adiabatically to 150 KPa. Determine the change in entropy.
 - (b) 10 kg water at 375K is mixed adiabatically with 30 kg water at 275K. what is the change in entropy? Assume that the specific heat of water is 4.2 kJ/Kg and is independent of pressure.
 - (c) Show that Cp-Cv=R for an ideal gas.
 - (d) What is clausius inequality?
 - (e) A rigid and insulated tank of volume 2 m³ is divided into two gases at 400 K & 3 MPa. While the second compartment contains the same gas at 600 K & 1 MPa. The partition is punctured and the gases are allowed to mix. Determine the entropy change of the gas. The isobaric molar heat capacity of gas is equal to (5/2)R.

151405] 1 [Contd...

- (f) A motor car tyre has a pressure of 2 atm the room temperature of 270C. if the tyre suddenly bursts, find the resulting temperature. $\gamma = 1.4$
- 2 Attempt any two parts of the following. $[10\times2=20]$
 - (a) The equation of state of a certain substance is given by the expression V=(RT/P-C/T³), and the specific heat is given by the relation Cp=A+BT where A,B,C, are constants. Derive expressions for changes in internal energy, enthalpy and entropy for and an isothermal process.
 - (b) (i) Prove that Cp-Cv= β^2 VT/k, where β =coefficient of volume expansion and k=coefficient of compressibility
 - (ii) Derive fundamental property relation.
 - (c) (i) Find the fugacity coefficient at 1 bar, 5bar and 10 bar for a gas that follows the equation of state PV=RT (1-0.00513P), Where P is pressure in bar.
 - (ii) Explain the principle of corresponding states. What is accentric factor.
- Attempt any two parts of the following: $[10\times2=2]$
 - (a) The enthalpy of a binary liquid system of species 1 & 2 at fixed T & P is represented by the equation- $H = 400X_1 + 600X_2 + X_1X_2(40X_1 + 20X_2),$

where H is in J/mol Determine expression for $\overline{H_1}$ & $\overline{H_2}$ as function of X_1

- (b) (i) Derive the Clapeyron equation.
 - (ii) Explain the term Excess property and fugacity coefficient.
- (c) The excess Gibbs energy of a binary liquid mixture at T & P is given by $G^E/RT = (-2.6.x_1 1.8x_2)x_1x_2$. Find expression for $\ln \gamma_1$ & $\ln \gamma_2$ at T & P.
- 4 Attempt any **two** parts of the following. $[10\times2=20]$
 - (a) Write short notes on Raoult's law and Henery law.
 - (b) (i) Draw P-xy & T-xy diagram for azeotropic mixture.
 - (ii) Define ideal solution. What is Lewis/Randall rule?
 - (c) (i) An equimolar solution of benzene & toluene is totally evaporated at a constant T of 363 K, At this temp. the vapor pressure of benzene & toluene are 135.4 & 54 KPa respectively. What are the pressures at the beginning & at the end of the vaporization process?
 - (ii) Show that multiple phases at the same T and P are in equilibrium when the fugacity of each constituent species is the same in all phases.
- 5 Attempt any **two** parts of the following: [10X2=20]
 - (a) (i) Derive the expression: In $K = -\Delta G^{\circ}/RT$
 - (ii) A chemically reactive system contains the following species in the gas phases NH₃, NO, NO₂, O₂ & H₂O. Determine a complete set of independent reaction for this system. How many degree of freedom does the system have?

- (b) Write short notes on: (i) Duhem's Theorem for reacting and non reacting system (ii) Phase rule for reacting system, (iii) Effect of temperature on the equilibrium constant using Vant Hoff equation.
- (c) A feed stock of pure n-butane is cracked at 750 K and 1.2 bar to produce olefins. Only two reactions have favorable conversion at those conditions-

$$\begin{split} &C_4 H_{10} \to C_2 H_4 + C_2 H_6(I) \\ &C_4 H_{10} \to C_3 H_6 + C H_4(II) \end{split}$$

If these reactions reach equilibrium, what is the product composition? The equilibrium constant at 750 K are given- KI = 3.856 & KII = 268.4

151405] 4 [200]