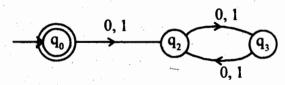
(Following Paper ID and Roll No. to be filled in your Answer Book)
PAPER ID: 0112 Roll No.

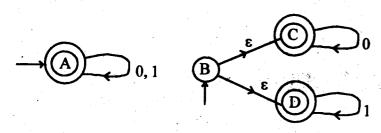
B. Tech.


(SEM. IV) EVEN THEORY EXAMINATION 2012-13 THEORY OF AUTOMATA & FORMAL LANGUAGES

Time: 3 Hours

Total Marks : 100

Note: - Attempt all questions. All questions carry equal marks.


- 1. Attempt any four parts of the following:
 - (a) For the given languages $L_1 = \phi$, $L_2 = \varepsilon$, and $L_3 = \{0, 1\}^*$. Compute $L_1.L_2$ and $L_2 \cup L_3$.
 - (b) Construct a DFA for the language that contains the strings ending with 0.
 - (c) Define the language of the following finite automaton.

(d) Let $M = (Q, \sum, q_o, F, \delta)$ be an NFA. Show that for any $q \in Q$ and $a \in \sum$,

$$\hat{\delta}$$
 (q, a) = δ (q, a)

(e) From the given NFAs, decide whether the two accept the same language

- (f) Let $L = \{0 \ 1\} \ \{0, 1\}^*$; construct NFA with ε moves that accepts L^2 .
- 2. Attempt any two parts of the following:
 - (a) Construct a DFA accepting the following language: (010+00)*(10)*
 - (b) Let r_1 and r_2 be two regular expressions defined as follows:

$$r_1 = (00*1)*1$$

and $r_2 = 1 + 0(0+10)*11$.

Prove that $r_1 = r_2$.

(c) Prove that the language

$$L = \{0^n \mid n \text{ is prime}\}\$$

is not regular.

- 3. Attempt any two parts of the following:
 - (a) Find a Context Free Grammar (CFG) generating the following language:

$$L = \{a^i b^j c^k \mid i = j \text{ or } i = k\}$$

(b) Describe the language generated by the following grammar:

$$S \rightarrow bS/aA/\epsilon$$

$$A \rightarrow aA/bB/b$$

$$B \rightarrow bS$$

(c) Show that the given grammar is ambiguous. Also find an equivalent unambiguous grammar.

$$S \rightarrow ABA$$

$$A \rightarrow aA/\epsilon$$

$$B \rightarrow bB/\epsilon$$

- 4. Attempt any two parts of the following:
 - (a) Define a Push Down Automaton (PDA). Construct a PDA accepting the language of palindromes.
 - (b) Construct a deterministic PDA for the following language:

$$L = \{x \in \{a, b\}^* \mid n_a(x) \neq n_b(x)\}$$

where n_a(x): number of a's in the string x

 $n_b(x)$: number of b's in the string x

- (c) Show that if L is a language of Deterministic PDA (DPDA) and R is regular then $L \cap R$ is a language of DPDA.
- 5. Attempt any two parts of the following:
 - (a) Construct a turing machine for reversing a string.
 - (b) Let T₁ and T₂ be two Turing machines; compute the functions f₁ and f₂ from N to N (where N is a natural number), respectively, construct a Turing machine that computes the function min (f₁, f₂).
 - (c) Prove that every recursively enumerable language where complent is closed must be recursive.

3