(Following Paper ID and Roll No. to be filled in your Answer Book) PAPERID 1071

Roll No.

B. Tech.
(SEM. IV) EXAMINATION, 2006-07
THEORY OF AUTOMATA \& FORMAL LANGUAGES
Time : 3 Hours]
[Total Marks : 100
Note : (1) Attempt all questions.
(2) All questions carry equal marks.

1 Attempt any two parts of the following :
(a) (i) Find the transitive closure R^{+}and 4 reflexive and transitive closure R^{*} of the relation-

$$
R=\{(1,2),(2,3),(3,4),(5,4)\}
$$

(ii) Consider the following transition diagram- 6

Test whether the string 110101 is accepted by the finite automata represented by above transition diagram. Show the entire sequence of states traversed.
(b) Give DFA accepting the following languages over the alphabet $\{\mathbf{0}, \mathbf{1}\}$ -
(i) The set of all strings with three consecutive zeros.
(ii) The set of all strings such that every block of 05 consecutive symbols contains at least two zeros.
(c) Find the equivalence partition and corresponding 10 reduced machine in standard form, for the following machine -

$P S$	NS, \boldsymbol{Z}	
	$\boldsymbol{X}=\mathbf{0} \mathbf{0}$	$\boldsymbol{X}=\mathbf{1}$
A	$\mathrm{F}, 0$	$\mathrm{~B}, 1$
B	$\mathrm{G}, 0$	$\mathrm{~A}, 1$
C	$\mathrm{B}, 0$	$\mathrm{C}, 1$
D	$\mathrm{C}, 0$	$\mathrm{~B}, 1$
E	$\mathrm{D}, 0$	$\mathrm{~A}, 1$
F	$\mathrm{E}, 1$	$\mathrm{~F}, 1$
G	$\mathrm{E}, 1$	$\mathrm{G}, 1$

where, $\quad P S=$ Present State, $N S=$ Next State $\boldsymbol{Z}=$ Output, $\boldsymbol{X}=\boldsymbol{I} / \boldsymbol{P}$

2 Attempt any two questions :
(a) Construct DFA equivalent to the NFAgiven by

	0	1
p	p, q	p
q	r	r
r	s	-
s	s	s

V-1071]
(b) Construct NFA for $(a / b)^{+}$and derive 10 DFA through subset construction algorithm.
(c) Prove or disprove the following for regular 10 expressions r, s and t
(i) $(r+s)^{*}=r^{*}+s^{*}$
(ii) $s(r s+s)^{*} r=r r^{*} s\left(r r^{*} s\right)^{*}$

3 Attempt any four questions :
(a) Construct finite automata equivalent to following regular expression -
$10+(0+11) 0^{*} 1$
(b) Write regular expression for the following language over the alphabet $\{0,1\}$ "The set of all strings not containing 101 as a substring."
(c) Explain the procedure to convent a Moore machine into its corresponding Mealy machine, with the help of an example.
(d) Find parse tree for the expression abbcde 5 considering the productions -
$S \rightarrow a \mathrm{Ac} \mathrm{Be}$
$A \rightarrow A b$
$A \rightarrow b$
$B \rightarrow d$
(e) What is an ambiguous grammar ? Explain with $\mathbf{5}$ example.
(f) Consider the grammar $(\{S, A, B\},\{a, b\}, P, S) 5$ that has the productions -

$$
S \rightarrow \bar{b} A / a B
$$

$$
A \rightarrow b A A / a S / a
$$

$$
B \rightarrow a B B / b S / b
$$

Find an equivalent grammar in CNF.

4 Attempt any two questions :
(a) Define concept and working of a PDA. 10
(b) Construct a PDA equivalent to the following 10 gramma:-

$$
\begin{aligned}
& S \rightarrow a A A \\
& A \rightarrow a S / b S / a
\end{aligned}
$$

(c) Construct a PDA accepting the language- 10 $\left\{a^{i} b^{j} c^{k} / i \neq j\right.$ or $\left.j \neq k\right\}$

5 Attempt any four questions :
(a) Define the basic model of a Turing machine. 5
(b) Explain the techniques for Turing machines 5 construction.
(c) Explain Church's thesis. 5-
(d) Design Turing machine to compute the function 5 $f(n)=n^{2}$
(e) Design Turing machine to recognize the language- 5 "The set of strings with an equal no. of O's and l's."
(f) Give recursive definitions for : $n+m$. 5

