

Printed Pages : 7
TMA - 011 / MA - 011
(Foliowing Paper ID and Roil No. to be filled in your Answer Book)
 Roll No. \square

B. TECH.

(SEM. VI) EXAMINATION, 2006-07
GRAPH THEORY
Time : 3 Hours]
[Total Marks : 100
Note : Attempt all questions.
1 Attempt any four parts of the following : $\mathbf{5 \times 4 =} \mathbf{2 0}$
(a) Define a bipartite graph. Show that the complement of a bipartite graph need not to be a bipartite.
(b) Discuss the Konigsberg Bridge Problem.
(c) Define the following with one example each:
(a) Infinite graph
(b) Hamiltonian path
(c) Component of a graph
(d) Euler graph
(e) Spanning subgraph
(d) Define isomorphic graph. Draw three isomorphic graph of the following graph.

(e) Differentiate, with example, a simple graph and a multigraph. Show that the maximum number of edges in a simple graph with n vertices $\mathrm{n}(\mathrm{n}-1) / 2$.
(f) What is the largest number of vertices in a graph with
(a) 35 edges if all vertices are of degree at least 3.
(b) 24 edges and all vertices of the same degree

2 Attempt any four parts of the following:
$5 \times 4=20$
(a) Define binary tree and state two application of it in computer science.
(b) Apply Prime's algorithm to find a minimal spanning tree of the following graph.

Fig. 2
(c) Find shortest path form v_{i} to v_{8} using Dijkstra algorithm in the following graph.

Fig. 3
(d) Define spanning tree of a graph. Show that a Hamiltonian path in a graph is a spanning tree.
(e) Show a tree in which its diameter in not equal to twice of the radius. Under what condition does this inequality hold? Elaborate.
(f) What are the different properties when a graph G with n vertices is called a tree?

3 Attempt any four parts of the following :
(a) Define the edge connectivity and vertex connectivity of a connected graph. Find them for the following graphs :

(ii)

Fig. 4
[Contd..
(b) Show that a complete graph k_{n} is planar if $n \leq 4$.
(c) Draw a spanning tree of the following graph given below and list all the fundamental circuits with respect to this tree.

Fig. 5
(d) Find the dual of the following graph.

Fig. 6
(e) Prove that a graph G has a dual if and only if it is a planar.
(f) Show, by sketching, that the thickness of eightvertex complete graph is two.

4 Attempt any two parts :
(a) Define basis vectors of a graph. Find the number of distinct basis possible in a cut-set subspace.
(b) Define (i) reduced incidence matrix (ii) fundamental circuit matrix and (iiii) fundamental cut-set matrix, of a connected graph. Also derive the relationship between them.
(c) Consider the circuit matrix (B) and incidence matrix (A) of a simple connected graph whose columns are arranged using the same order of edges. Then prove that every row of B is orthogonal to every row of A. Also verify the result for the following graph.

Fig. 7
[Contd..

5 Attempt any two parts :
$10 \times 2=20$
(a) What do you mean by chromatic number and chromatic polynomial of a graph? Determine the chromatic number and chromatic polynomial of the following graphs.

111

(i)

(ii)

Fig. 8
(b) Define Euler diagraph with example. Prove that every Euler diagraph without isolated verities is strongly connected. Also, show by constructing a counter example, that converse is not true.
(c) State and prove Cayley's theorem for counting trees.

