(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID : 2709 Roll No. | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

B.Tech.

(SEM. VII) THEORY EXAMINATION 2011-12

COMPUTATIONAL COMPLEXITY

Time : 3 Hours
Total Marks : 100
Note :-Attempt all questions.

1. Attempt any two parts of the following:
$(10 \times 2=20)$
(a) What are the different models of computation? Describe these models in comparative manner.
(b) Prove or disprove the following conjectures:
(i) $f(n)=O(g(n))$ implies
$\mathrm{g}(\mathrm{n})=\mathrm{O}(\mathrm{f}(\mathrm{n}))$
(ii) $f(n)+g(n)=\theta(\min (f(n), g(n)))$
(iii) $\mathrm{f}(\mathrm{n})=\mathrm{O}(\mathrm{g}(\mathrm{n}))$ implies
$2^{\mathrm{f}(\mathrm{n})}=\mathrm{O}\left(2^{\mathrm{g}(\mathrm{n})}\right)$
where $f(n)$ and $g(n)$ are asymptotically positive functions.
(c) Are the following sets closed under the following operation. Prove your answer :
(i) FIN (the set of finite languages) under the function odds L , defined on languages as follows : $\operatorname{odds}(\mathrm{L})=\{\mathrm{w}: \exists \mathrm{x} \in \mathrm{L}(\mathrm{w}=\operatorname{odds}(\mathrm{x})))\}$.
(ii) INF(the set of infinite languages) under the function odds L.
2. Attempt any two parts of the following:
(a) What do you mean by complexity classes? Discuss the relationship among the complexity classes.
(b) Show that if there is a reduction from P_{1} to P_{2} then:
(i) If P_{1} is undecidable then so is P_{2}.
(ii) If P_{1} is non-recursive enumerable then so is P_{2}.
(c) State and prove Rice theorem.
3. Attempt any two parts of the following:
(a) Explain the general steps in establishing NP-completeness proof of a given problem.
(b) Explain the Gödel's incompleteness theorem with the help of examples.
(c) Write the randomized version of Quick sort algorithm.
4. Attempt any two parts of the following :
($10 \times 2=20$)
(a) State the circuit satisfiability problem. Prove the circuit satisfiability problem belongs to the class NP.
(b) Consider the problem of multiplication of an $\mathrm{n} \times \mathrm{n}$ matrix $\mathrm{A}=\left(\mathrm{a}_{\mathrm{i}}\right)$ by an n -vector $\mathrm{x}=\left(\mathrm{x}_{\mathrm{j}}\right)$. The resulting n -vector $y=\left(y_{i}\right)$ is given by the equation :

$$
\mathrm{y}_{\mathrm{i}}=\sum_{\mathrm{j}=1}^{\mathrm{n}} \mathrm{a}_{\mathrm{ij}} \mathrm{x}_{\mathrm{j}} ; \text { for } \mathrm{i}=1,2, \ldots, \mathrm{n} .
$$

Write an algorithm to perform matrix-vector multiplication by computing all the entries of y in parallel.
(c) Write short note on Interactive proofs.
5. Attempt any two parts of the following :
(a) Explain the completeness and soundness properties of probabilistically checkable proof system.
(b) Explain the following class of problems:
(i) BPP
(ii) RP
(iii) CORP
(iv) ZPP .
(c) Write short note on Quantum computing.

