B.TECH.

THIRD SEMESTER EXAMINATION, 2001-2002 SWITCHING THEORY \& LOGIC DESIGN

Time- -2 Hours
Total Marks-50
Note : Answer $A L L$ the questions.

1. Attempt any Two parts. All parts carry equal marks. 4×2
(a) Simplify the Boolean function F in Sum-of-product using the don't - care conditions d :

$$
\begin{aligned}
& F=B^{\prime} C^{\prime} D^{\prime}+B C D^{\prime}+A B C D^{\prime} \\
& d=B^{\prime} C D^{\prime}+A B C^{\prime} D
\end{aligned}
$$

(b) Simplify the following Boolean function by means of thé tabulation method :-

$$
F(A, B, C, D)=\sum(4,6,7,8,9,10,11,15)
$$

(c) The following Boolean Expression :
$B E+B^{\prime} D E^{\prime}$ is a simplified version of expression :-

$$
A^{\prime} B E+B C D E+B C^{\prime} D^{\prime} E+A^{\prime} B^{\prime} D E^{\prime}+B^{\prime} C^{\prime} D E^{\prime}
$$

Are there any don't-care conditions? If so, what are they?
2. Attempt any Four parts. All parts carry equal marks. $31 / 2 \times 4$
(a) (i) Find the decimal equivalent of the following binary numbers assuming signed magnitude representation of the binary number :-
(1) 001000
(2) 1111
(ii) Write the procedure for the subtraction of two numbers with $(r-1)$ ' s complement.
(b) Perform the subtraction with the following binary numbers using (1) $2^{\prime} s$ complement (2) $1^{\prime} s$ complement.
(i) $11010-1101$
(ii) $10010-10011$
(c) Perform the subtraction with following decimal numbers using (1) $10^{\prime} s$ complement (2) 9's complement.
(i) $5294-749$
(ii) $27-289$
(d) Implement the following function with a 4×1 multiplexer.

$$
F(A, B, C)=\sum(1,3,5,6)
$$

(e) Implement a full-adder circuit with a 3×8 decoder and two $O R$-gates.
(f) What is Hazards? How will you design a Hazardfree switching circuit?
3. Attempt any Four parts. All parts carry equal marks. $3^{1 / 2} \times 4$
(a) How will you differentiate between combinational circuit and sequential circuit.
Consider a J-K' flip-flop, i.e. a J-K flip-flop with an inverter between external input K^{\prime} and internal input K .
(i) Obtain the flip-flop characteristic table.
(ii) Obtain the characteristic equation.
(b) Prepare the truth-table for the circuit of fig-3b and show that it acts as a T-flip-flop.

Figure-3b
(c) A mod-3 counter (reset after every three pulses) is shown in fig-3c. The flip-flops used are master-slave J-K. Sketch the waveform of Q_{0} and Q_{1} when clock pulses are applied and verify its operation. Assume $Q_{0}=Q_{1}=0$ initially.

Figure-3c
(d) What is race-around condition?

If \bar{Q} output of a D-type flip-flop is connected to D-input, it acts as a toggle switch, verify.
(e) For the state diagram shown in figure-3e, obtain the state table and design the circuit using minimum number of J-K flip-flop.

Figure-3e
(f) Design a 3-bit binary UP/DOWN counter with a direction control M. Use J-K flip-flop.
4. Attempt any Four parts. All parts carry equal marks. $3^{1 / 2} \times 4$
(a) Explain the principle of constructing a Hamming errorcorrecting code. Construct a Seven-bit Hamming code for the 4-bit message 0100 .
(b) Explain the floating-point data representation for decimal number and binary number. When is a floating point number said to be normalized ?
(c) What is the difference between asynchronous and synchronous circuits? Represent the Octal number (17.32) into floating point Octal number and floating point binary number.
(d) Draw the basic model for fundamental mode circuits and explain.

