No. of Printed Pages-4

EC-302

B. TECH. CHAZIARAD THIRD SEMESTER EXAMINATION, 2005-2004 SWITCHING THEORY & LOGIC DESIGN

Time: 2 Hours Total Marks: 50

Note: Answer ALL questions.

Answer any ONE of the following :— $(10 \times 1 = 10)$

(a) Minimize the following using Tablar method:—

$$f(xyzwp) = \sum m(13,15,17,18,19,20,21,23,25,27,29,31)$$

$$+\sum d(1,2,12,24).$$

- (b) (i) Minimize the above function in 1(a), using K-map in SOP form.
 - (ii) Minimize the above function in 1(a). using K-map in POS form.
- 2. Answer any THREE parts of the following :— $(4\times3=12)$
 - (a) Write 9's and 10's complement of the following numbers:—

(b) A combinational circuit is defined by the following Boolean functions. Design circuit with a decoder and external gates:—

$$F_1(x, y, z) = x'y'z' + xz$$

$$F_2(x, y, z) = x y'z + x'z$$

302

Turn Over

(c) Using four-input multiplexers, implement the following function:—

$$F(A,B,C) = \sum m(0,2,3,5,7)$$

control variables A and B.

- (d) Write notes on the following:
 - (1) Parallel Adder
 - (ii) Look-ahead Carry Adder
- 3. Answer any TWO of the following :--

 $(7 \times 2 = 14)$

Using NAND gates, sketch a clocked-RS flipflop. Using this FF, sketch MSJK flip-flop and using this MSJK FF, sketch Toggle and Delay flip-flops.

Fig.-1

Implement the state transition diagram shown in fig.-1, using T-flip-flops.

(c) Analyse the synchronous sequential http://www.uptuonline.com in Fig.-2 and draw the state diagram for it.

Answer any TWO of the following:— $(7\times2=14)$

- (a) Explain the floating-point data representation for decimal number and binary number. What are the advantages and disadvantages of having different values for base and radix in floating-point number format? Consider both the cases when the base is an integral power of the radix and when it is not.
- (b) An asynchronous sequential circuit has two internal states and one output. The excitation and output functions describing the circuit are as follows:

$$Y_1 = x_1 x_2 + x_1 y_2' + x_2' y_1$$

$$Y_2 = x_2 + x_1 y_1' y_2 + x_1' y_1$$

$$z = x_2 + y_1$$

.02