

Printed Pages: 4

EC - 607

5

(Following Paper ID and Roll No. to be filled in your Answer Book) Roll No.

PAPER ID: 3043

B. Tech.

(SEM. VI) EXAMINATION, 2006-07 COMMUNICATION ENGINEERING

Time: 3 Hours]

[Total Marks: 100

Note: Attempt all questions, All questions carry equal marks

- Attempt any four parts of the following. 1. $5 \times 4 = 20$
 - Evaluate the Fourier transform of the (a) 5 following signal $g(t) = \exp(-t)^* \sin(2\pi f_c t)$

where '*' denotes the convolution operator.

- (b) Derive an expression for the effective modulation index of a multi-tone modulated AM signal.
- Describe briefly the operation of a Ring 5 (c) modulator used for the generation of DSB-SC signals.
- (d) Describe briefly the operation of the 5 superheterodyne receiver system. uptuonline.com V-3043[Contd... 1

5

5

2×10

[Contd..

2+2+1

(e)

approximately defined by $s(t) = A_c \cos(2\pi f_c t) - \beta \sin(2\pi f_c t) \sin(2\pi f_m t)$ Determine the envelope of this modulated signal. What is the ratio of the maximum to

generation of FM signals.

band noise.

technique.

Consider the narrow-band FM signal

- (f)
- (a)

2

(c)

(b)

- (e)
- 3 Attempt any two parts of the following. (a)

V-30431

uptuonline.com

swing is large.

- the minimum value of this envelope? Draw a phasor diagram to represent the above signal. Describe briefly the indirect method of 5
- Attempt any **four** parts of the following. $5 \times 4 = 20$ What do you mean by the narrow-band noise?
 - Describe briefly the functions of pre-emphasis and de-emphasis filters in FM systems.
- band-pass signals. (d) Explain natural and flat-top sampling. Compare 5

State and explain the sampling theorem for

Discuss briefly, the properties of the narrow-

- the two. Describe briefly the Pulse Width Modulation 5
- (f) Explain the methods for the demodulation of 5 PAM signals.
 - What is quantization noise in PCM systems? 2+3+5How does it depend upon the step size? Suggest some methods to overcome the difficulties encountered when the modulating signal amplitude

- (b) Describe delta modulation systems. What 5+2+3 are its limitations? How can they be overcome?
- (c) Describe briefly the different line codes used for the electrical representation of the binary data 0 and 1.
- 4 Attempt any two parts of the following. 2×10
 - (a) What are TDM and FDM systems? Compare 10 the two and mention the application of each.
 - (b) Discuss briefly the operation of a noncoherent FSK transmitter and receiver systems. Also derive an expression for the probability of error.
 - (c) Explain phase shift keying. Describe coherent 10 detection of PSK signals. Also derive an expression for the probability of error.
- 5 Attempt any two parts of the following: 2×10
 - (a) What do you mean by the mutual 3+2+5 information of a communication channel? Define the capacity of a discrete memoryless channel in terms of mutual information. Derive an expression for the channel capacity of a discrete memoryless binary symmetric channel.
 - (b) Consider a sequence of symbols emitted by a source with their probabilities as given below:

Symbol	x1	x 2	х3	x4	x5	х6	x7	x8
Probability	0.13	0.07	0.19	0.11	0.1	0.15	0.15	0.1

Compute the Huffman code for the above source symbols. Also find the average codeword length.

(c) Consider a sequence of symbols generated by a source with their probabilities of occurrence as given below:

Symbol	s 1	s 2	s 3	s 4	s 5	s 6	s 7	s 8	s 9
Probability	0.22	0.19	0.15	0.12	0.08	0.06	0.06	0.07	0.05

Determine the code words of the symbols using Shannon-Fano coding technique. Also determine the average code-word length.