- (ii) Similarity transformation
- (iii) Euclidean transformation
- (b) Consider the function sampling at the argument variables $T_0 = 0.5$, $t_1 = 0.75$, $t_2 = 1.0$, and $t_3 = 1.25$. where f(0) = 2, f(1) = 3, f(2) = 4 and f(3) = 4. Apply the discrete Fourier transform to obtain the Fourier spectrum.
- (c) Write short notes on Stereo imaging.
- 5. Answer any **two** of the following:

 $(10 \times 2 = 20)$

- (a) Describe the watershed algorithm for image segmentation. Explain, why watershed segmentation tends to oversegment images?
- (b) Describe the following with respect to pattern recognition:
 - (i) Statistical classification
 - (ii) Syntactic recognition
 - (iii) Tree search
- (c) A binary image contains straight lines oriented horizontally, vertically, at 45° and 45°. Give the set of masks that can be used to detect 1 pixel long breaks in these lines. Assume that the gray level of the back ground is 0.

Printed Pages-4

TEC044

(Following Paper ID a				-			′ 1
PAPER ID: 0394	Roll No.						Ц

B. Tech.

(SEM. VIII) THEORY EXAMINATION 2010-11 **DIGITAL IMAGE PROCESSING**

Time: 3 Hours

Total Marks: 100

Note: (1) Attempt all questions.

- (2) All questions carry equal marks.
- 1. Answer any four of the following:

 $(5 \times 4 = 20)$

- (a) What are different models used for colour perception in image processing? Describe each.
- (b) Give the formula for two dimensional Fourier transform and its inverse. Why do we need two Dimensional transforms for image analysis?
- (c) A 4 by 4 input image is defined by the following matrix with gray scale [0-9]:

2	3	3	2
4	2	4	3
3	. 2	3	5
2	4	2	4

Draw the image histogram and show the new output image along with its histogram after histogram equalization.

- (d) Explain sampling and quantization. Explain the effects of reducing sampling and quantization.
- (e) What do you mean by image processing? Distinguish between image processing and graphics. List Various components of image processing system.
- 2. Answer any two of the following: $(10 \times 2 = 20)$
 - (a) What is meant by singularity and ill-condition in relation to image restoration? Derive Expression of restored image using least square approach. Comment on the singularity of this filter.
 - (b) What is spatial filtering? What is the difference between linear and nonlinear filters? Give some examples of linear and non linear filters.
 - (c) Apply contrast stretching technique on 3 bit gray kevel image of size 4 by 4

2	1	2	1 -
4	5	- 5	6
3	2	1	4.
6	2	1	6

3 Answer any **two** of the following:

 $(10 \times 2 = 20)$

(a) What is Mathematical Morphology? Suppose two discrete one dimensional functions are represented by the sequence:

Compute $f \oplus h$, $f \Theta h$, $f \circ h$; f.h.

(b) What is zooming? How can it be performed?

Obtain the digital negative of the following 8 bits per pixel image:

121	205	217	156	151
139	127	157	117	125
252	117	236	138	142
227	182	178	197 .	242
201	106	119	251	240

(c) A colour image in CMYK colour space has following values (in percentage)

$$C = 85, M = 69, Y = 56, K = 21$$

Convert this colour space into CMY and RGB colour space.

4. Answer any two of the following:

 $(10 \times 2 = 20)$

- (a) Define following transformations and List the properties that are preserved under each one:
 - (i) Affine transformation