Number of Printed Pages — 7

EE-301

B.TECH.

THIRD SEMESTER EXAMINATION, 2001-2002 NETWORK AND SYCTEMS

Time—3 Hours

Total Marks-100

Note: Answer all the Five questions.

- 1. Answer any *Two* parts of the following:—
- 10×2
- (a) Draw the graph and find a tree for the network shown in figure-1. Considering 'O' as a datum node and assuming elements BD and BC as links, determine the tie-set schedule, branch impedance matrix and source voltage matrix. Obtain the loop equations using the above said matrices.

Figure-1

(b) (i) The fundamental cut-set matrix is given as:

					0		
	Branches				Links		
	1	2	3	4	5	6	7
Cut-Sets	1	0	0	0	-1	0	0
	0	1	0	0	1	0	1
	0	0	1	0	0	1	1
	0	0	0	1	0	1	0

Draw the oriented graph of the network.

 5×4

- (ii) Derive general equilibrium equation of a network using cut-set matrix Q, branch admittance [Y_b], current source vector [I_s] and voltage source vector [V_s]
- (c) The switch in circuit of figure-2 has been closed for a very long time. It opens at t = 0. Find $V_c(t)$ for t > 0 using differential equation approach.

- 2. Answer any Four parts of the following:—
 - (a) Find the Norton's equivalent of the network shown in figure-3.

(b) In the network shown in figure-4, two voltage sources act on a load impedance connected to terminals a and b. If the load is variable both in reactance and resistance, what load will Z_L receive the maximum power?

Figure-4

(c) Determine the current in the capacitor branch by superposition theorem in circuit of figure-5.

Figure-5

(*d*) Draw the block diagram representation of the circuit of figure-6. The variables *x* and *y* are the input and output variables respectively.

- (e) State and prove Thevenin theorem.
- (f) (i) State Millman's theorem.
 - (ii) Calculate the load current I in the circuit of figure-7 by Millman's theorem.

Figure-7

3. Answer any *Two* of the following :—

 10×2

- (a) Find inverse Laplace of $F_1(s) \cdot F_2(s)$ by convolution integral for the following:
 - (i) $F_1(s) = \frac{1}{s+a}$, $F_2(s) = \frac{1}{(s+b)(s+c)}$
 - (ii) $F_1(s) = -\frac{s}{s+1}$, $F_2(s) = \frac{1}{s^2+1}$
- (b) Obtain the relationship between various nature of location of poles in s-plane and their corresponding time responses for a second order characteristic equation.
- (c) Construct Bode Magnitude and phase plot for impedance of the network shown in figure-8.

4. Answer any *Four* of the following:—

 5×4

(a) Find short circuit parameters of the circuit shown in figure-9.

Figure-9

- (b) What is meant by symmetry in two-port network? Determine the condition of symmetry in terms of hybrid parameters for a two-port network.
- (c) Derive transmission parameters in terms of short circuit and open circuit impedance of a two-port network.
- (d) Determine transmission parameters of a T-network shown in figure-10 considering three sections as shown in the figure, assuming connected in cascade manner.

Find hybrid parameters of the network shown in figure-11. 10Ω

Write the necessary conditions for a network function (f) to be a transfer function.

 5×4

Without finding the inverse Laplace transform of F(s), determine $f(0^+)$ and $f(\infty)$ for each of the following functions:

(i)
$$\frac{4e^{-2s}(s+50)}{s}$$

(ii) $\frac{s^2+6}{s^2+7}$

$$\frac{s^2+6}{s^2+7}$$

Find the Laplace transform of the time function shown in figure-12.

(c) The network shown in figure-13 is initially under steady state conditions. At t = 0, the switch across the source $i_0(t)$ is opened. Using Laplace transform approach, obtain the expression for voltage $V_L(t)$ across the inductance.

Figure-13

- (d) Check the positive realness of the following functions:—
 - (i) $\frac{s^2 + s + 6}{s^2 + s + 1}$
 - (ii) $\frac{s^2 + 6s + 5}{s^2 + 9s + 14}$
- (e) Synthesize $Z(s) = \frac{(s+1)(s+3)}{s(s+2)}$ in Cauer I form.
- (f) Synthesize $Z(s) = \frac{(s+5)}{(s+1)(s+6)}$ in forster's II form.