No. of Printed Pages—3

B. TECH.

Goel Institute of Total FOURTH SEMESTER EXAMINATION, 200

ELECTRICAL ENGINEERING MATERIAL

Time: 2 Hours Total Marks: 50

lote: Answer **ALL** the questions.

- 1. Attempt any FOUR of the following:— $(3\times 4=12)$
 - Explain the terms: (a)
 - (*i*) space lattice
 - (ii) effective number of lattice points
 - (iii) crystal structure
 - (b) (i) Name and draw seven basic crystal systems.
 - (ii) Calculate the number of atoms possessed by a unit cell for three types of cubic crystals.
 - (i) Give the steps for determining the (c) Miller Indices of a crystal plane.
 - (ii) Find the Miller Indices of a plane that makes intercept 1 on a-axis, 2 on b-axis and is parallel to *c*-axis.
 - (*d*) A BCC crystal is used to determine the wave-length of X-rays. The Bragg angle for reflection from (110) plane is 20.2°. What is the wavelength? The lattice parameter of the crystal is 3.15 Å.

- (e) What is Ionic Bonding? Take the example of NaCl and write down the stepting www.untuonline.com of ionic bond between Na and Cl.
- (f) Explain edge and screw dislocations in crystals.
- 2. Attempt any FOUR of the following :— $(3\times4=12)$
 - (a) Discuss the motion of electrons in electric field and derive expressions for mobility and conductivity.
 - (b) State the law of emission of electrons from heated metals. How would you determine the emission equation constants?
 - (c) Explain the terms : Thomson effect, Seebeck Effect and Peltier Effect.
 - (*d*) Apply the principles of Thermodynamics to a thermoelectric circuit and derive expression for Peltier coefficient.
 - (e) The resistivity of Ga-Sb at 300°K is found to be 2×10^{-3} ohm m. The electron and hole mobilities are 0·3 and 0·1 m²/volt-sec. respectively. Calculate the carrier density. Given $e = 1.6 \times 10^{-19}$ Coulomb.
 - (f) Differentiate between intrinsic and extrinsic semiconductors.
- 3. Attempt any TWO of the following :— $(6.5 \times 2=13)$
 - (a) Show that the internal field due to polarization inside the dielectric is given by

$$E' = \frac{\rho}{3 \in \Omega}$$

EE-403

- (b) Define polarizability. Show that the polarizability of an atom of the www.uptuonline.com $4\pi \in_0 a^3$.
- (c) (i) Discuss different kinds of breakdown in solid dielectric. (3½)
 - (ii) Explain the terms, dielectric loss and loss angle by a phasor diagram. (3)
- 4. Attempt any TWO of the following:— $(6.5 \times 2=13)$
 - (a) Distinguish between soft and hard magnetic materials. Give few examples of each type. Draw and explain typical B-H curve for soft magnetic material.
 - (b) What are Ferrites? Give the general formula for single ferrite and mixed ferrite. What are their advantages over other magnetic materials?
 - (c) Explain Superconductivity. What is the effect of magnetic field on it? Give few applications of superconductivity.