(Following Paper ID and Roll No. to be filled in your Answer Book)

Paper ID : 214104

 Roll No. \squareMCA
(SEM. I) THEORY EXAMINATION, 2015-16

DISCRETE MATHEMATICS

[Time:3 hours]
[Maximum Marks:100]

Section-A

Q. 1 Attempt all questions from this section. $\quad(10 \times 2=20)$
(a) Define power set.
(b) If $f: R \rightarrow R$ defined by $f(x)=3 x+7$ is a one one anto function, find f^{1}.
(c) In a group (G, *), for any element $a \in G$ prove that $\left(\mathrm{a}^{-1}\right)^{-1}=\mathrm{a}$.
(d) Define abelian group.
(e) Draw the Hasse diagram of $\left\langle\mathrm{D}_{30},\right|>$, where D_{30} is the set of all the divisors of 30 .
(f) Define lattice.
(g) Show that there are $\frac{n(n-1)}{2}$ edges in a complete graph of n vertices.
(h) Define binary search tree.
(i) Show that $(p \rightarrow q)=\sim(p \vee q)$.
(j) Determine the truth value for each of the following statements. Assume x, y are elements of set of integers.
$\forall x \exists y \quad x+y$ is even
$\exists x \forall y \quad x+y$ is even

Section-B

Note: Attempt any five questions from this section :

$$
(5 \times 10=50)
$$

2. (a) If $A=\{a, b, c, d, e\}, B=\{a, c, e, g\}$ and $C=\{b, e, f$, $\mathrm{g}\}$ then prove the following :
(i) $(A \cup B) \cap C \neq A \cup(B \cap C)$
(ii) $(A-B) \cap(A-C)=A-(B \cup C)$
(b) Let R be an equivalence relation over set of integers I defined as :
$R=\{(a, b) \mid a-b$ is divisible by 5$\}$. Find the equivalence classes of set I.
3. Check whether the following functions $f: R \rightarrow R$ are oneone onto :
(i) $f(x)=e^{x}$
(ii) $\mathrm{f}(\mathrm{x})=|\mathrm{x}|$
4. Show that the $\mathrm{n}^{\text {th }}$ roots of unity form a communulative group with respect to ordinary multiplication.
5. Solve the following recurrence relation :

$$
a_{n}-4 a_{n-1}+4 a_{n-2}=n+1 ; a_{0}=0, a_{1}=1, n \geq 2
$$

6. (a) Show that $\left(p^{\wedge}\left(\sim p^{\vee} q\right)\right)^{\vee}\left(q^{\wedge} \sim\left(p^{\wedge} q\right)\right) \equiv q$.
(b) Write converse, inverse and contrapositive of the following statements :
(i) If the teacher is absent, then some students do not complete their homeork.
(ii) All the students complete their homework and the teacher is present.
7. Prove or disprove :
(a) Every simple Euler graph with an even number of vertices has an even number of edges.
(b) Peterson's graph is Hamiltonian
8. Consider the lattice L given below :

(i) Find all sub-lattices with 5 elements.
(ii) Find atoms.
(iii) Find complement of a and b if they exists. (iv) Is L distributive?
(v) Is L complemented?
9. (a) In a Boolean algebra, if $a=b$ then prove that:

$$
a \cdot b^{\prime}+a^{\prime} \cdot b=0
$$

(b) Draw the simplified network of $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=\mathrm{x} . \mathrm{y} \cdot \mathrm{z}+\mathrm{x} . \mathrm{y}^{\prime} . \mathrm{z}+\mathrm{x}^{\prime} \cdot \mathrm{y}^{\prime} \cdot \mathrm{z}$
10. Write a short notes on the following :
(a) Eular graph
(b) Hamilotian graph
(c) Chromatic number
(d) Planar graph
(e) Regular graph

Section-C

Note : Attempt any two questions from this section.
$(15 \times 2=30)$

1. (a) In a shipment of 50 CDs 10 are defective. Determine
(i) In how many ways we can select 35 CDS. 2
(ii) In how many ways we can select 35 nondefective CDs.
(iii) In how many ways we can select 35 CDs containing exactly 5 defective CDs. 2
(iv) In how many ways we can select 35 CDs containing at least 5 defective CDs. 2
(b) If R^{-1} and S^{-1} are the inverses of relation R and S respectively, then prove that $(\mathrm{So} \mathrm{R})^{-1}=\mathrm{R}^{-1} \mathrm{o}^{-1}$.
2. (a) Following table gives the value of the function $f(x$, y, z). Find the correspondiing function. Draw a simplified circuit diagram of the function. Also find the minterm normal form of $f(x, y, z) . \quad(3+4+3)$

x	y	z	$f(x, y, z)$
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	0
1	1	1	0

(b) Determine the validity of the following argument :
"If wages increases, there will be inflation. The cost of living will not increase, if there is no inflation. Wages will increase; therefore the cost of living will not increase".
3. (a) Define Ring.
(b) For all a, b, c of ring R show that: $4 \times 2.5=10$
(i). $\mathrm{a} .0=0 . \mathrm{a}=0$
(ii) $(-a) \cdot b=-(a . b)=a .(-b)$
(iii) $\mathrm{a} .(\mathrm{b}-\mathrm{c})=\mathrm{a} . \mathrm{b}-\mathrm{a} . \mathrm{c}$
(iv) $(-a) \cdot(-b)=a \cdot b$

