http://www.aktuonline.com

Printed Page: 7

MCA-213

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 7306 Roll No.

M. C. A. (Second Semester) Theory Examination, 2010-11

DATA STRUCTURE USING C

Time: 3 Hours]

[Total Marks: 100

Note: This question paper contains three Sections.

Selecting-A, Section-B and Section-C with the weightage of 20, 30 and 50 marks respectively.

Follow the instructions as given in each Section.

Section-A

This question contains 10 questions of multiple choice, True/False and Fill in the blanks. Attempt all parts of this Section. $2\times10=20$

1. (a) Consider the following tree:

- (i) +, -, *, a, b, c, d
- (ii) a, -, b, +, c, *, d
- (iii) a, b, c, d, -, +, *
- (iv) -, a, b, +, *, c, d.
- (b) The number of swapping needed to sort the numbers 8, 22, 7, 9, 31, 19, 5, 13 in ascending order using bubble sort will be:
 - (i) 11
 - (ii) 12
 - (iii) 13
 - (iv) 14.
- (c) The depth of a complete binary node with n nodes will be:
 - (i) $\log_2(n+1)-1$
 - (ii) $\log_2(n)$
 - (iii) $\log_2(n-1)+1$
 - (iv) $\log_2(n) + 1$.

- (d) The average successful search time for sequential search on n items is:
 - (i) n/2
 - (ii) (n-1)/2
 - (iii) (n+1)/2
 - (iv) $\log(n) + 1$.
- (e) There are four different algorithms A1, A2, A3, A4 to solve the given problem with the order $\log(n)$, $\log(\log(n))$, $n\log(n)$, $n/\log(n)$. Which is the best algorithm?
 - (i) A1
 - (ii) A2
 - (iii) A3
 - (iv) A4.
- (f) The way a card game player arranges his card as he picks them up one by one, is an example of:

r

- (i) Selection sort
- (ii) Insertion sort
- (iii) Merge sort
- (iv) Bubble sort.

- (g) Select odd man out: www.aktuonline.com
 - (i) Depth first search
 - (ii) Prims' algorithm
 - (iii) Adjacency Matrix
 - (iv) In order traversal.
- (h) Polynomial representation can be done using:
 - (i) Structure
 - (ii) Linked List
 - (iii) Tree
 - (iv) Graph.
 - (i) In every case time complexity is given priority to space complexity in designing algorithm. (True/False)
 - (j) Priority queue can be implemented using

Section B

Attempt any three questions. All questions carry equal marks. 10×3=30

2. (a) Differentiate between iteration and recursion giving suitable example. Recursion takes more execution time when compared to iteration? Give reason.

- (b) Define algorithm. What are the criteria that every algorithm must satisfy? Write an algorithm to find the second largest from the list of given integers.
- (c) (i) How two-dimensional arrays are stored in one dimensional memory?
 - (ii) If an array is defind an int a[10][20] in C. Device a formula to calculate the address of an any variable say a[i][j], for any valid value of i and j.
- (d) What is hash table? How using hash table is beneficial for us? Explain collision resolution strategies used in hash table.
 - (e) Write an algorithm for quick sort. Trace your algorithm on the following data to sort the list:

12, 5, 14, 2, 56, 7, 85, 51, 18, 1, 75, 42, 1, 9.

П

Section-C

Attempt any two parts from each question. All questions carry equal marks. 10×5=50

3. (a) What is a sparse matrix? How sparse matrices can be represented efficiently in memory?

- (b) What is a Data Type? Differentiate between primitive data type, abstract data type, and polymorphic data type.
- (c) Convert the given infix expression to equivalent postfix notation:

$$a+b/(c-d)+\exp -h$$
.

- 4. (a) Write an algorithm for adding and deleting in circular queue.
- (b) Write a program in C to delete a specific element in a single linked list.
 - (c) Doubly linked list takes more space than singly linked list for storing one extra address. In what condition could be a doubly linked list be more beneficial than singly linked list?
- 5. (a) What is tree data structure? Explain the different ways of traversing a tree.
 - (b) Explain the significance of threaded binary tree.
 - (c) Write a program in C for binary search.

 Analyze its running time.
- 6. (a) Perform Heap sort on the following list of integers:

23, 5, 47, 58, 4, 52, 15, 48, 26, 3, 11, 4, 7.

- (b) Explain the procedure of insertion and deletion in Binary search tree.
- (c) Define AVL tree. Explain the different types of rotation done in AVL tree.
- 7. (a) What are the different ways in which the graph is represented in computer memory?
 - (b) What is Minimal Spanning Tree? Write an algorithm to find the MST.
 - (c). Write short notes on any two of the following:
 - (i) Sequential Files
 - (ii) Indexing
 - (iii) B+ Tree Index Files.