Following I	Paper ID	and Roll No.	to l	e f	ille	d in	yo	ur A	nsv	wer	Во	ok)
PAPERAD	: 1434	Roll No.										

M.C.A.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2010-11

COMPUTER BASED OPTIMIZATION TECHNIQUES

me : 3 Hours

Total Marks: 100

- Note: (1) Attempt all questions.
 - (2) All questions carry equal marks.
- 1. Attempt any two of the following:— (10×2=20)
 - (a) (i) What do you mean by Inventory Control? Briefly describe the reasons for carrying Inventory.
 - (ii) Briefly describe the various types of inventories, also describe the different costs associated with inventory control.
 - (b) What are stochastic models? Describe its characteristics and applications.
 - (c) A Manual stamper currently valued at Rs. 1,000 is expected to last 2 years and costs Rs. 4,000 per year to operate. An automatic stamper which can be purchased for Rs. 3,000 will last 4 years and can be operated at an annual cost of Rs. 3,000. If money carries the rate of interest 10% per year, determine which stamper should be purchased.

ţ

(a) Solve the following Linear Programming Problem using 'Big-M' method:

Maximize =
$$-2x_1 - x_2$$

subject to $3x_1 + x_2 = 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \le 4$
 $x_1, x_2 \ge 0$.

(b) Solve the following Linear Programming Problem using Dual Simplex' method:

Minimize
$$Z = 3x_1 + x_2$$

subject to $x_1 + x_2 \ge 1$
 $2x_1 + 3x_2 \ge 2$
 $x_1, x_2 \ge 0$.

- (c) (i) Discuss the role of Artificial variable in the solution of Linear Programming Problem.
 - (ii) What do you understand by Non-Degenerate Basic feasible solution, and how it is different from Degenerate Basic feasible solution?
- 3. Attempt any two questions of the following:— (10×2=20)
 - (a) (i) Describe the procedure to deal with Unbalanced Transportation and Assignment Problem.
 - (ii) How the Integer Programming Problem is different from Linear Programming Problem? Describe the mixed integer linear programming problems.
 - (b) Determine the 'Initial Basic Feasible Solution' to the following Transportation Problem using the Vogel's

Approximation Method, and then improve that solution to make it optimum:

	$\mathbf{W}_{\mathbf{l}}$	W_2	W_3	W_4	Availabil t y
F_1	19	30	50	10	7
F_2	70	30	40	60	9
$\overline{F_3}$	40	8	70	20	18
Re quirement	5	8	7	14	

(c) Solve the following assignment problem to find the maximum total expected sale:

	Area	I	II	III	IV
Salesman	Α	42	35	28	21
	В	30	25	20	15
	C	30	25 [°]	20	15
	D	24	20	16	12

(a) Attempt any two questions of the following:—

 $(10 \times 2 = 20)$

- (i) Write the steps to solve the Quadratic Programming
 Problem using Wolfe's Method.
 - (ii) What do you understand by Dynamic Programming? State Bellman's principle of optimality in Dynamic Programming.
- (b) Use Wolfe's method to solve the following problem:

3

Minimize
$$Z = X_1^2 + X_2^2 + X_3^2$$

subject to $x_1 + x_2 + 3x_3 = 2$
 $5x_1 + 2x_2 + x_3 = 5$
 $x_1, x_2, x_3 \ge 0$.

http://www.aktuonline.com

(c) Determine x_1 , x_2 and x_3 so as to

Maximize
$$Z = -x_1^2 - x_2^2 - x_3^2 + 4x_1 + 6x_2$$

subject to $x_1 + x_2 \le 2$
 $2x_1 + 3x_2 \le 12$
 $x_1, x_2 \ge 0$.

- Attempt any two questions of the following:— (10×2=20)
 - (a) Discuss the basic characteristics of queueing system, along with some important applications. Also, differentiate between Steady and Transient state.
 - (b) For the Model (M | M | 1): (∞ | FCFS), obtain the steadystate difference equations. Also find the probability distribution of queue length.
 - (c) (i) Find the distribution of Inter-Arrival time for Poisson arrivals in a queueing system.
 - (ii) State and prove the Markovian Property of Inter-Arrival times.