
AKTU COMPILER DESIGN 2017-18 SOLUTIONS

1. a) what is translator?

Answer : A translator or programming language processor is a compiler for converting a program

written in the source language into a program in a different programming language (the target language)

that is functionally equivalent. This is without losing the functional or logical structure of the original

program. These include translations between high-level and human-readable computer languages such

as C++ and Java, intermediate-level languages such as Java bytecode, low-level languages such as the

assembly language and machine code, and between similar levels of language on different computing

platforms, as well as from any of these to any other of these. The term is also used for translators

between software implementations and hardware/ASIC microchip implementations of the same

program, and from software descriptions of a microchip to the logic gates needed to build it.

b) Differentiate between compiler and assembler.

Answer : COMPILER

The compiler works on a basic principle. It simply reads the whole program written on it. Then it

converts the whole program to the machine/computer language. For this process, the compiler takes a lot

of time to read the whole program or to analyze the whole program. The compilers are generally the

memory eaters. They need a lot of memory to complete their process. Because they create the object

code by analyzing the program written on them. They work fast as compared to the interpreters. Because

they have the very less execution time. In this process, the whole program doesn’t require to be
created/compiled every time. Languages like to C and the C++ commonly used the compilers.

ASSEMBLER

Assembler is also a compiler. But in the assembler, the source code is written in the Assembly language.

This assembly language is a simple language. And this language is understandable by the humans as

well. The work of an assembler is to convert the assembly language to the machine language. The

assembler works on the principle of the one to one mapping translation. There are improvements coming

in the assemblers day by day. They are becoming very easy and user-friendly programs to use as well.

The latest editions of the assemblers work very efficiently and they help us in the debugging of the

written code as well.

DIFFERENCE BETWEEN COMPILER AND ASSEMBLER

The compiler is a simple program which converts the source code written by the humans to a machine

language. While the assembler has a little bit different work, it converts the assembly language to the

machine language.

Compilers work more directly than the assemblers. The compilers can convert the human written code in

the machine language directly. But the assembler can’t do this at once. It converts a source code to an
object code first then it converts the object code to the machine language with the help of the linker

programs.

http://www.aktuonline.com

c) Discuss conversion of NFA into a DFA also give the algorithm used in this conversion.

Answer Problem Statement

Let X = (Qx, ∑, δx, q0, Fx) be an NDFA which accepts the language L(X). We have to design an
equivalent DFA Y = (Qy, ∑, δy, q0, Fy) such that L(Y) = L(X). The following procedure converts the
NDFA to its equivalent DFA −

Algorithm

Input − An NDFA

Output − An equivalent DFA

Step 1 − Create state table from the given NDFA.

Step 2 − Create a blank state table under possible input alphabets for the equivalent DFA.

Step 3 − Mark the start state of the DFA by q0 (Same as the NDFA).

Step 4 − Find out the combination of States {Q0, Q1,... , Qn} for each possible input alphabet.

Step 5 − Each time we generate a new DFA state under the input alphabet columns, we have to apply
step 4 again, otherwise go to step 6.

Step 6 − The states which contain any of the final states of the NDFA are the final states of the

equivalent DFA.

d) Write down the short note on symbol table.

Answer:

Symbol Table is an important data structure created and maintained by the compiler in order to keep

track of semantics of variable i.e. it stores information about scope and binding information about

names, information about instances of various entities such as variable and function names, classes,

objects, etc.

It is built in lexical and syntax analysis phases.

The information is collected by the analysis phases of compiler and is used by synthesis phases of

compiler to generate code.

It is used by compiler to achieve compile time efficiency.

It is used by various phases of compiler.

e) Describe Data structure for symbol table.

Following are commonly used data structure for implementing symbol table :-

List –In this method, an array is used to store names and associated information.

http://www.aktuonline.com

http://www.aktuonline.com/

A pointer “available” is maintained at end of all stored records and new names are added in the order as
they arrive To search for a name we start from beginning of list till available pointer and if not found we

get an error “use of undeclared name” While inserting a new name we must ensure that it is not already
present otherwise error occurs i.e. “Multiple defined name”

Insertion is fast O(1), but lookup is slow for large tables – O(n) on average

Advantage is that it takes minimum amount of space.

Linked List – This implementation is using linked list. A link field is added to each record.

Searching of names is done in order pointed by link of link field.

A pointer “First” is maintained to point to first record of symbol table.

Insertion is fast O(1), but lookup is slow for large tables – O(n) on average

Hash Table –

In hashing scheme two tables are maintained – a hash table and symbol table and is the most commonly

used method to implement symbol tables..

A hash table is an array with index range: 0 to tablesize – 1.These entries are pointer pointing to names

of symbol table.

To search for a name we use hash function that will result in any integer between 0 to tablesize – 1.

Insertion and lookup can be made very fast – O(1).

Advantage is quick search is possible and disadvantage is that hashing is complicated to implement.

Binary Search Tree –

Another approach to implement symbol table is to use binary search tree i.e. we add two link fields i.e.

left and right child.

All names are created as child of root node that always follow the property of binary search tree.

Insertion and lookup are O(log2 n) on average.

f) What is mean by Activation record.

Answer: Control stack or runtime stack is used to keep track of the live procedure activations i.e the

procedures whose execution have not been completed. A procedure name is pushed on to the stack when

it is called (activation begins) and it is popped when it returns (activation ends). Information needed by a

single execution of a procedure is managed using an activation record or frame. When a procedure is

called, an activation record is pushed into the stack and as soon as the control returns to the caller

function the activation record is popped.

A general activation record consist of the following things:

http://www.aktuonline.com

Local variables: hold the data that is local to the execution of the procedure.

Temporary values: stores the values that arise in the evaluation of an expression.

Machine status: holds the information about status of machine just before the function call.

Access link (optional): refers to non-local data held in other activation records.

Control link (optional): points to activation record of caller.

Return value: used by the called procedure to return a value to calling procedure

Actual parameters

g) What is postfix notations?

Answer:

Postfix Notation

Postfix notation is the useful form of intermediate code if the given language is expressions.

Postfix notation is also called as 'suffix notation' and 'reverse polish'.

Postfix notation is a linear representation of a syntax tree.

In the postfix notation, any expression can be written unambiguously without parentheses.

The ordinary (infix) way of writing the sum of x and y is with operator in the middle: x * y. But in the

postfix notation, we place the operator at the right end as xy *.

In postfix notation, the operator follows the operand.

h) Define Three address Code

Answer:

In computer science, three-address code[1] (often abbreviated to TAC or 3AC) is an intermediate code

used by optimizing compilers to aid in the implementation of code-improving transformations. Each

TAC instruction has at most three operands and is typically a combination of assignment and a binary

operator. For example, t1 := t2 + t3. The name derives from the use of three operands in these statements

even though instructions with fewer operands may occur.

Since three-address code is used as an intermediate language within compilers, the operands will most

likely not be concrete memory addresses or processor registers, but rather symbolic addresses that will

be translated into actual addresses during register allocation. It is also not uncommon that operand

names are numbered sequentially since three-address code is typically generated by the compiler.

A refinement of three-address code is A-normal form (ANF).

i) What are Quadruples.

http://www.aktuonline.com

Answer

Quadruples

Each instruction in quadruples presentation is divided into four fields: operator, arg1, arg2, and result.

The equation r1 = c * d; is represented below in quadruples format:

Op arg1 arg2 result

* c d r1

j) what do you mean by regular expression?

Answer

A regular expression (sometimes called a rational expression) is a sequence of characters that define a

search pattern, mainly for use in pattern matching with strings, or string matching, i.e. “find and
replace”-like operations.

Regular expressions are a generalized way to match patterns with sequences of characters. It is used in

every programming language like C++, Java and Python.

http://www.aktuonline.com

