(Following Paper ID a	nd Roll No.	to be filled	in your Ansv	ver Book)
PAPER ID: 3301	Roll No.			
NO. 1000 2000 .	2-2-1550A		8 William	

UPTUonline.com

UPTUonline.com

B.Tech.

(SEM. I) ODD SEMESTER THEORY

EXAMINATION 2013-14

ELECTRONICS ENGINEERING

Time: 3 Hours

Total Marks: 100

Note:— The question paper contains three sections, Section A,
Section B and Section C with the weightage of 20, 30
and 50 marks respectively. Follow the instruction as
given in each section. Be precise and to the point in
your answer.

SECTION-A

This section contains ten questions of short answer type (50-75 words). Attempt all parts of this section. (2×10=20)

- 1. (i) Explain the effect of temperature on diode characteristics.
 - (ii) Write the diode current equation and describe its variable.

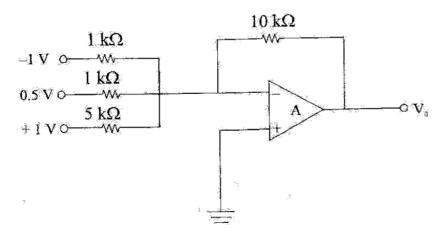
(iv) How transistor can be defined as current operated device?

emitter, base and collector in a transistor.

(v) How electric field in a FET controls the drain current?

(iii) Discuss doping profile and physical appearance of

- (vi) Differentiate depletion and enhancement type MOSFET.
- (vii) Enlist the characteristics of an ideal OPAMP.
- (viii) Convert F = X + YZ to canonical SOP.
- (ix) State DeMorgan's Theorem.
- (x) What are the main components of CRT?


SECTION—B

Attempt any three questions of this section. All questions carry equal marks. (10×3=30)

(a) (i) Using illustration, explain how the depletion region and barrier voltage are produced at a PN junction. Discuss the resistance of forward biased and reverse biased PN junction.

- (b) (i) Derive the relationship $I_c = \beta I_B + (1 + \beta)I_{co}$
 - (ii) A transistor having $\alpha = 0.975$ and reverse saturation current $I_{CO} = 10~\mu A$ is operated in CE mode. What is the β for this configuration? If the base current is 250 μA , calculate I_E and I_C .
- (c) Write short notes on the following:
 - (i) Non Inverting Amplifier
 - (ii) OPAMP Subtracter.

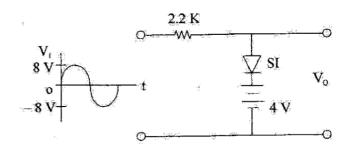
Calculate output voltage for the circuit shown below:

UPTUonline.com

http://www.uptuonline.com

- (d) (i) Simplify $(A + B + C)(A + \overline{B} + \overline{C})(A + B + \overline{C})$ $(A + \overline{B} + C)$ using Boolean algebra.
 - (ii) Design a two input EX-OR gate using minimum number of (i) NAND gates only and (ii) NOR gates only.
- (e) Write short notes on :- UPTUonline.com
 - (i) Digital Voltmeter
 - (ii) Digital Multimeter.

SECTION-C

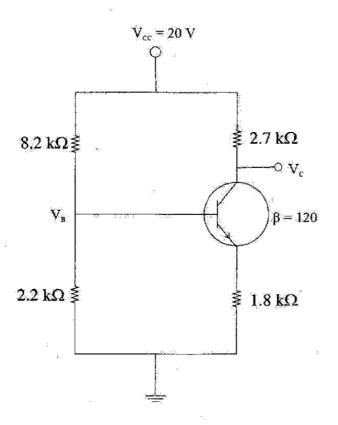

Attempt all questions. All questions carry equal marks.

 $(10 \times 5 = 50)$

 What do you mean by rectification? Draw and explain centre tap full wave rectifier and calculate Ripple factor, Efficiency, and TUF.

OR

Draw and explain the circuit diagram for series clipping circuits with waveforms. Draw the output waveforms for following network:

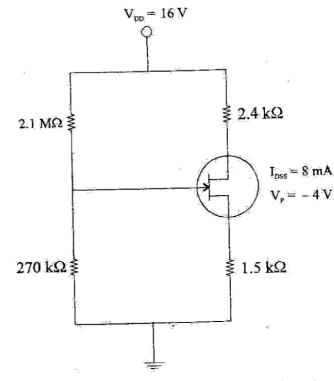

4. Draw and label the circuit diagram of a small signal single stage transistor amplifier in CE mode using h-parameter.

Obtain expression for Current Gain (A₁), Voltage Gain (A_V),

Input Resistance (R₁) and Output Resistance (R₀).

OR

Determine I_c , I_B , V_c and V_B for the following network :



5

 Give a sketch of the basic structure of n-channel enhancement type MOSFET. Explain its operation and characteristics.
 Discuss threshold voltage.

OR

Determine I_D , V_{GS} , V_D , V_S , V_{DS} for the following network.

 (i) Simplify the following expression using K-Map and realize using NOR gates only.

$$F(A, B, C, D) = \overline{A} \overline{B} \overline{C} + A \overline{C} \overline{D} + A \overline{B} + A B C \overline{D} + \overline{A} \overline{B} C$$

UPTUonline.com

http://www.uptuonline.com

(ii) Minimize using K-map and realize using NAND gates only.

$$F(A, B, C, D) = \Pi M(3, 4, 5, 7, 9, 13, 14, 15) . d(0, 2, 8)$$

7. What is CRO? Explain it using block diagram. How it is used to measure the voltage and frequency?

UPTUonline.com