Printed Pages: 3

NBT-101/EBT-101

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 154104

Roll No.

B. Tech.

(SEM. I) (ODD SEM.) THEORY EXAMINATION, 2014-15

ELEMENTARY MATHEMATICS-I

Time: 3 Hours [Total Marks: 100

SECTION - A

- 1 Attempt All Parts of this question : $(2 \times 10 = 20)$
 - (a) Evaluate : $\lim_{\theta \to \frac{\pi}{2}} \left(\frac{1 \cos 4\theta}{\sin 2\theta} \right)$.
 - (b) If $y = \frac{1}{Tan x} \frac{1}{Cot x}$, then find $\frac{dy}{dx}$.
 - (c) Find the critical points of $f(x) = x^3 + x^2 8x + 1$.
 - (d) Test the existence of function f(x) = |x| at x = 0.
 - (e) Evaluate: $\int \left(\sqrt{x} + \frac{1}{\sqrt{x}}\right)^2 dx$
 - (f) Evaluate: $\int_0^{\frac{\pi}{2}} \frac{Sinx}{1 + Cos^2 x} dx$
 - (g) Solve $\log \frac{dy}{dx} = x 2y$

154104]

1

[Contd...

(h) Find Order and Degree of given differential equation

$$\left(\frac{d^3y}{dx^3}\right)^2 - 3\left(\frac{d^2y}{dx^2}\right)^3 + 2x\frac{dy}{dx} + 6y = 0$$

- (i) A bag contains 10 mangoes out of which 4 are rotten. Two mangoes are taken out together. If one of them is found to be good, find the probability that other is also good.
- (j) State Rolle's Theorem.

SECTION-B

- 2 Attempt Any Three Parts of the following: (10×3=30)
 - (a) Differentiate: $y = \sin \sqrt{x + \log(tanx)}$
 - (b) Examine the continuity of f(x) at x = 0.

$$f(x) = \begin{cases} \frac{\sin 2x}{x} & \text{, when } x \neq o \\ 1 & \text{, when } x = 0 \end{cases}$$

- (c) Find the area bounded by curves y = |x 1|, y = 0 and |x| = 2.
- (d) Solve: $\cos^2 x \frac{dy}{dx} + y = \tan x$.
- (e) A bag contains 5 white, 7 red and 8 black balls. If four balls are drawn one by one with replacement, what is the probability that (i) none is white? (ii) only two are white? (iii) one is white?

SECTION-C

Note: Attempt Any Two Parts from each $[(2\times5)\times5=50]$ question of this section:

- 3 (a) Differentiate: $y = tan^{-1} \sqrt{\frac{1-cosx}{1+cosx}}$.
 - (b) Evaluate: $\lim_{x\to 0} \left(\frac{s^x + s^{-x} 2}{x^2} \right)$.
 - (c) Find the slope of curve $y = 3x^4 4x^2 + 6$ at (1, -1) and (-1, 2).
- 4 (a) Find $\frac{dy}{dx}$, if $y = (\cos x)^{(\cos x)^{\cos x}$
 - (b) Find the percentage error in calculating the area of ellipse, when error of +1% is made in measuring the major and minor axis.
 - (c) Find the Maxima and Minima for the function $f(x) = x + \sin 2x$ in interval $0 \le x \le 2\pi$.
- 5 (a) Evaluate: $\int \frac{2x}{(x^2+1)(x^2+2)} dx$.
 - (b) Evaluate: $\int_0^{\pi} \frac{x \tan x}{\sec x + \cos x} dx$.
 - (c) Find the Area of curve bounded by parabola $y^2 = 4ax$ and a line y = mx

$$3e^{x}tany dx + (1 + e^{x})sec^{2}y dy = 0$$
; given $y(0) = \frac{\pi}{4}$.

(b) If $y = A\cos nx + B\sin nx, then prove that \frac{d^2y}{dx^2} + n^2y = 0.$

(c) Solve:
$$\frac{dy}{dx} = e^{x-y} + x^2 e^{-y}$$
.

- 7 (a) Two cards are drawn at random from a pack of 52 cards. What is the probability that The drawn cards are both aces?
 - (b) A speaks truth 4 out of 5 times. A die is tossed. He reports that there is a six. What is The chance that actually there was a six?.
 - (c) If E and F are events such

that
$$P(E) = 0.4$$
, $P(F) = 0.8$ and $P\left(\frac{F}{E}\right) = 0.6$, then Find $P\left(\frac{E}{E}\right)$?