Printed Pages: 2

RAS203

B.TECH.

THEORY EXAMINATION (SEM-IV) 2016-17 MATHEMATICS-II

Time: 3 Hours Max. Marks: 70

Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION - A

Attempt any seven parts for the following:

 $7 \times 2 = 14$

www.aktuonline.com

www.aktuonline.con

- Solve the differential equation $\frac{d^2y}{dx^2} = -12x^2 + 24x 20$ with the condition x = 0, $y = \frac{3}{2}$ and x = 0, y = 21 ad hence find the value of y at x = 1.

 For a differential equation $\frac{d^2y}{dx^2} + 2\alpha \frac{dy}{dx} + y = 0$, find the value of α for which the differential equation characteristic equation has equal number.

 For a Legend polynomial prove that $P_n(1) = 1$ and $P_n(-1) = (-1)^n$.

 For the Bessel's function $J_n(x)$ prove the following identities: $J_{-n}(x) = (-1)^n J_n(x) \text{ and } J_{-n}(-x) = (-1)^n J_n(x)$
- (c)
- (d)
- Evaluate the Laplace transform of Integral of a function $L\left\{\int_{0}^{t} f(t/dt)\right\}$. (e)
- Evaluate the value of integral $\int_0^{\infty} t \cdot e^{-2t} cost dt$. (f)
- Find the Fourier coefficient for the function $f(x) = x^2$ $0 < x < 2\pi$ (g)
- Find the partial differential equation of all sphere whose centre lie on Z-axis. (h)
- Formulate the PDE by eliminating the arbitrary function from $\phi(x^2 + y^2, y^2 + z^2) = 0$ (i)
- Specify with suitable example the clarification Partial Differential Equation (PDE) for elliptic, parabolic and hyperbolic differential equation.

SECTION - B

2. Attempt any three parts of the following questions:

- A function n(x) satisfies the differential equation $\frac{d^2n(x)}{dx^2} \frac{n(x)}{c^2} = 0$, where L is a constant. The boundary conditions are n(0) = x and $n(\infty) = 0$. Find the solution to this equation.
- Find the series solution by Forbenias method for the differential equation $(1-x^2)y'' - 2xy' + 20y = 0$
- Determine the response of damped mass spring system under a square wave given by the differential equation y'' + 3y' + 2y = u(t-1) - u(t-2), y(0) = 0,

Using the Laplace transform.

Obtain the Fourier expansion of $f(x) = x \sin x$ as cosine series in $(0, \pi)$ and hence show that

$$\frac{1}{1 \times 3} - \frac{1}{3 \times 5} + \frac{1}{5 \times 7} - \dots = \left(\frac{\pi - 2}{4}\right)$$

Solve by method of separation of variable for PDE $x\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial x} = 0$, $u(x,0) = 4e^{-x}$

www.aktuonline.com

www.aktuonline.com

SECTION - C

Attempt all parts of the following questions:

 $7 \times 5 = 35$

Attempt any two parts of the following:

www.aktuonline.com

Find the particular solution of the differential equation

$$\frac{d^2y}{dx^2} + a^1 = \sec ax$$

If $y = y_1(x)$ and $y = y_2(x)$ are two solutions of the equation $\frac{d^2y}{dx^2} + P(x)\frac{dy}{dx} +$ Q(x)y = 0, then show that $y_1\left(\frac{dy_2}{dx}\right) - y_2\left(\frac{dy_1}{dx}\right) = ce^{-\int Pdx}$, where c is constant.

Solve by method of variation of Parameter for the differential equation :

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + ay = \left(\frac{e^{3x}}{x^2}\right)$$

Attempt any two parts of the following:

(a) Prove that
$$\sqrt{\frac{\pi x}{2}} J_{3/2}(x) = \left(\frac{1}{x} \sin x - \cos x\right)$$

- Show that Legendre polynomials are orthogonal on the interval [-1, 1]
- Prove that $\int_{-1}^{+1} x P_n(x) dx = \frac{2n}{4\pi^2}$
- Attempt any two parts of the following:
 - Find the Laplace transform of Saw tooth wave function F(t) = Kt in 0 < t < 1 with period 1
 - Use Convolution theorem to find the inverse of function $F(s) = \frac{4}{s^2 + 2s + 5}$
 - Solve the simultaneous differential equation, using Laplace transformation - $\frac{dy}{dt} + 2x = \sin 2t$; $\frac{dy}{dt} - 2y = \cos 2t$, where x (0) = 1, y (0) = 0
- Attempt any two parts of the following:
 - If $f(x) = \left[\frac{\pi^{-x}}{2}\right]^2$, $0 < x < 2\pi$ then show that $f(x) = \frac{\pi^2}{12} \sum_{n=1}^{\infty} \frac{1}{n^2} \cos nx$
 - Find the complete solution of PDE $(\Delta^2 + 7\Delta D' + 12D'^2)/2 = \sin hx$, where symbols have their usual meaning.
 - Solve the PDE $p + 3q = 5z + \tan(y 3x)$
 - Attempt any one part of the following:
 - A square plate is bounded by lines x = 0, y = 0; x = 20, y = 20. Its faces are insulated. The temperature along the upper horizontal edge is given by u(x, 20) = x(20 - x) when 0 < x < 20 while the upper three edges are kept at $0^{\circ}C$. Find the steady state
 - A bar of 10 cm long with insulated sides A and B are kept at 20°C and 40°C respectively until steady state conditions prevail. The temperature at A is then suddenly varies to 50°C and the same instant that at B bowered to 10°C. Find the subsequent temperature at any point of the bar at any time.

5 www.aktuonline.com

CORRECTIONS - RAS203

SECTION - A

Q I

- Solve the differential equation $\frac{d^2y}{dx^2} = -12x^2 + 24x 20$ with the (a) condition x = 0, y = 5 and x = 2, y = 21 ad hence find the value of y at x = 2
- For a differential equation $\frac{d^2y}{dx^2} + 2\alpha \frac{dy}{dx} + y = 0$, find the value of α for which the differential equation characteristic equation has equal number of roots.
- Evaluate the Laplace transform of Integral of a function $L\left\{\int_0^t f(t) dt\right\}$.

SECTION - C

- Attempt any two parts of the following:
 - Find the particular solution of the differential equation

$$\frac{\mathrm{d}^2 y}{\mathrm{d}x^2} + \alpha^2 y = \sec \alpha x$$

(c) Solve by method of variation of Parameter for the differential equation:

$$\frac{d^2y}{dx^2} - 6\frac{dy}{dx} + 9y = \left(\frac{e^{3x}}{x^2}\right)$$

Attempt any two parts of the following:

- Find the Laplace transform of SAW tooth wave function $F(t) = K_1$ in $0 \le t \le 1$ with period 1
- Astempt any two parts of the following:
- the Find the complete solution of PDE
- $(D^2 + 7DD + 12D^2)z = \sin hx$, where symbols have their usual meaning.