

Printed Pages: 4

TAS-302

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 9967

Roll No.

B. Tech.

(SEM. III) EXAMINATION, 2007-08 COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

Time: 3 Hours] [Total Marks: 100

Note: Attempt all questions. All questions carry equal marks.

- 1 Attempt any four parts of the following: $5\times4=20$
 - (a) State the most common and popular computer arithmetic systems. Discuss with examples that the distributive laws of floating point arithmetic is not always satisfied in numerical computing.
 - (b) Use the series

$$\log_e\left(\frac{1+x}{1-x}\right) = 2\left(x + \frac{x^3}{3} + \frac{x^5}{5} + \dots\right)$$

to compute the value of $\log_e(1.2)$ correct to seven decimal places and find the number of terms retained.

(c) In a triangle ABC, $a = 30 \ cm$, $b = 80 \ cm$, $\angle B = 90^{\circ}$. Write a program in 'C' to find the maximum possible error in the computed value of area of

 \triangle *ABC*, if possible errors in a and b are $\frac{1}{3}\%$ and $\frac{1}{4}\%$ respectively.

(d) Develop an iteration formula to find a real root of the equation:

$$10\int_0^x e^{-x^2} dx = 1.$$

Find a root of this equation in the interval (0, 1).

- (e) Find a real root of the following equation correct to 3 decimal places $\cos x xe^x = 0$ by Bisection method.
- (f) Find a positive value of $\sqrt{13}$ correct to 4 decimal places by Newton-Raphson method.
- 2 Attempt any four parts of the following:
 - (a) (1) Prove: $\Delta + \nabla = \Delta / \nabla \nabla / \Delta$.
 - (2) Find the missing term in the table:

x: 2		3	4	5	6	
f(x):	45.0	49.2	54.1	?	67.4	

(b) Find the polynomial interpolating the data:

x:	0	1	2
f(x):	0	5	2

Hence estimate $\max |f(x)|$ in [0, 2] and the value

of
$$\int_0^2 f(x) dx$$
.

- (c) State rules to find the suitable formula for interpolating the data.
- (d) Using the Newton's divided difference formula find a polynomial which takes the values 3, 12, 15, -21, when x has the values 3, 2, 1, -1, respectively.

[Contd...

(e) For the following data:

x	f(x)	f'(x)
0.5	4	-16
1	1	-2

find the Hermite interpolating polynomial, fitting the data.

(f) Calculate the value of f(1.5) using Bessel's interpolation formula:

x :	0	1	2	3
f(x):	3	6	12	15

- 3 Attempt any two parts of the following:
 - (a) When does the need of numerical differentiation arise? Given the following data, find y'(6)

x: 0		2 3		4	7	8	
<i>y</i> :	4	26	5 8	112	466	922	

(b) State the need and scope of numerical integration. Use the trapezoidal rule to estimate the integral

$$\int_0^2 e^{x^2} dx$$

taking the number of intervals 10.

(c) Derive an expression for error estimation in Simpson's one-third rule. Use Boole's five-point formula to compute

$$\int_0^{\pi/2} \sqrt{\sin x} dx.$$

- 4 Attempt any two parts of the following:
 - (a) Given the initial value problem:

$$y' = 1 + y^2$$
, $y(0) = 0$.

find y(0.6) by Runge-Kutta method taking h = 0.2.

[Contd...

(b) Write a program in 'C' to solve the initial value problem:

$$y' = (x^2 - 1)y^2$$
, $y(0) = 2$, $0 \le x \le 1$

by Milne's Predictor-Corrector method.

(c) (1) Discuss the stability of Euler's method applied to the initial-value problem

$$y' = \lambda y$$
, $y(0) = 1$

(2) Consider the initial value problem:

$$y' = 2x + 3y$$
, $y(0) = 1$

Determine the number of terms in the Taylor's series required to obtain results correct to 5×10^{-6} for $x \le 0.4$

- 5 Attempt any two parts of the following:
 - (a) State some important curve-fitting procedures. Obtain the least squares fit of the form

$$f(t) = ae^{-3t} + be^{-2t}$$
 for the data:

t	t 0.1		0.3	0.4	
f(t)	0.76	0.58	0.44	0.35	

(b) Discuss regression and its importance. Given the following data:

x:	1	5	3	2	1	1	7	3
<i>y</i> :	6	1	0	0	1	2	1	5

Find a regression line of x on y.

(c) Discuss how control charts can be used in quality control of industrial products. The average percentage of defectives in 27 samples of size 1500 each was found to be 13.7%. Construct a suitable control chart for this problem. Explain how the control chart can be used to control quality.