Printed Pages-3

EOE038

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 0934

Roll No.

B.Tech.

(SEM. III) ODD SEMESTER THEORY EXAMINATION 2010-11

DISCRETE MATHEMATICS

Time: 3 Hours

Total Marks: 100

Note: (1) Attempt all questions.

- (2) Each question carries equal marks.
- 1. Attempt any four parts of the following:— $(5\times4=20)$
 - (a) If R is an equivalence relation on a set A, then show that R⁻¹ is also an equivalence relation on A.
 - (b) If R = {(a, b), (b, c), (c, a)} and A = {a, b, c}, then find reflexive, symmetric and transitive closure of R by the composition of relation R.
 - (c) Show that for any two sets A and B $\triangle A = (A \cap B) = A B$, without Verin diagram

 $A - (A \cap B) = A - B$, without Venn diagram.

- (d) What are the recursively defined functions? Give the recursive definition of factorial function.
- (e) Let $f, g, h \in R$ be defined as

$$f(x) = x + 2$$
, $g(x) = x - 2$, $h(x) = 3x + x \in \mathbb{R}$.

Find gof, hof and fohog.

- (f) State and prove Pigeon hole principle.
- 2. Attempt any four parts of the following:— (5×4=20)
 - (a) Consider the operator * defined on z, the set of integers as

a * b = a + b + 1 for all $x, y \in z$.

Show that (z, *) is an abelian group.

EOE038/VEQ-14735

[Turn Over

1

- (b) Show that every cyclic group is abelian but the converse is not true.
- (c) For a Group G, prove that G is abelian iff
 - $(ab)^2 = a^2 b^2 + a b \in G$
- (d) If H and K are any two subgroups of a group G, then show that $H \cup K$ will be a subgroup iff $H \subseteq K$ or $K \subseteq H$.
- (e) Define field with one example.
- (f) Consider a ring $(R, +, \cdot)$ defined by $a \cdot a = a$. Determine whether the ring is commutative or not.
- Attempt any two parts of the following:— $(10 \times 2 = 20)$
 - (a) Construct the truth table:
 - (i) $((P \rightarrow Q) \lor R) \lor (P \rightarrow Q \rightarrow R)$
 - (ii) $(P \rightarrow Q) \land (P \rightarrow R)$.
 - (b) Is the statement

$$((P \rightarrow Q) \land (Q \rightarrow R)) \rightarrow (P \rightarrow R)$$

a tautology?

- (c) Find out whether the following formula are equivalent or not:--
 - (i) $(P \land (P \rightarrow Q)) \rightarrow Q$
 - (ii) $(P \rightarrow Q) \not\supseteq (\neg P \lor Q)$.
- Attempt any four parts of the following:— $(5 \times 4 = 20)$
 - (a) If x and y denote the pair of real numbers for which 0 < x < y, prove by mathematical induction $0 < x^n < y^n$ for all natural number n.
 - (b) Show that:

$${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}.$$

(c) Solve the recurrence relation:

$$a_r = a_{r-1} + a_{r-2}, r \ge 2$$

with $a_0 = 1, a_1 = 1$.

EOE038/VEQ-14735

Find the solution of recurrence relation by generating function method:

$$a_r - 2a_{r-1} + a_{r-2} = 2^r, r \ge 2, a_0 = 2, a_i = 1.$$

- (e) Use quantifiers to say that $\sqrt{3}$ is not a rational number.
- (i) How many selections any number at a time may be made from three white balls, four green balls, one red ball and one black ball if at least one must be chosen.
 - (ii) In how many ways can a five-card hand be dealt from a deck of 52 cards?

 $(10 \times 2 = 20)$ Attempt any two parts of the following:-5.

- (a) (i) Differentiate between Euler graph and Hamiltonian graph with examples.
 - (ii) Show that a Hamiltonian path is a spanning tree.
- (b) Define the following with one example:
 - (i) Bipartite graph.
 - (ii) Complete graph.
 - (iii) Binary tree.
 - (iv) Chromatic number of a graph.
 - (v) Isomorphic graphs.
- (c) (i) Define degree of a vertex. Prove that the sum of degrees of all vertex of a graph is equal to the twice of the number of edges in a graph.
 - (ii) Define tree. Show that in a tree of n vertex will have n-1 edges.

3

http://www.UPTUonline.com