B-TECH
 (SEM. III) THEORY EXAMINATION 2017-18

 Engg. Mathematics-III

 Engg. Mathematics-III}

Time: 3 Hours
[Total Marks: 100]
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION-A

1. Attempt all questions in brief.
a) Find inverse Z-transformation of $\frac{z}{z^{2}-1}$.
b) If $u(x, y)=x^{2}-y^{2}$, prove that u satisfies Laplace equation.
c) Evaluate $\int_{C} \frac{z^{2}+1}{z^{2}-1} d z$ where C is circle $|z|=3 / 2$.
d) \quad Expand $\frac{1}{(z+1)(z+3)}$ in the regions $|z|<1$.
e) Estimate the production for 1964 and 1966 from the following data

Year:	1961	1962	1963	1964	1965	1966	1967
Production:	200	220	260	---	350	---	430

f) State Gregory-Newton divided difference interpolation formula.
g) Find Z-transformation of $f(k)=\left(\begin{array}{ll}1, & k=0 \\ 0, & k \neq 0\end{array}\right.$
h) State Cauchy's integral theorem.
i) Prove that: $\Delta \log f(x)=\log \left[1+\frac{\Delta f(x)}{f(x)}\right]$
j) Define kurtosis of a distribution.

SECTION-B

2. Attempt any three parts of the following:
a) Find the Fourier transform of $F(x)=\left\{\begin{array}{ll}1, & |x|<a \\ 0, & |x|>a\end{array}\right.$, hence evaluate $\int_{0}^{\infty} \frac{\sin x}{x} d x$
b) Examine the nature of the function $f(z)=\left\{\begin{array}{rl}\frac{x^{2} y^{5}(x+i y)}{x^{4}+y^{10}} ; & z \neq 0 \\ 0 & z=0\end{array}\right.$

In the region including the origin.
c) Solve the following system of linear equations by Crout's Method :

$$
x+y+z=3 ; 2 x-y+3 z=16 ; 3 x+y-z=-3
$$

d) Find the rank correlation coefficient of marks of A and B from the following dawaw.aktuonline.com

Marks A	15	20	27	13	45	60	20	75
Marks B	50	30	55	30	25	10	30	70

e) Solve the following differential equations using Runge- Kutta method :

Solve $\frac{d y}{d x}=\frac{1}{x+y}$ for $x=0.5$, to $x=1, h=0.5$ with $y(0)=1$.

SECTION-C

3. Attempt any two parts of the following:
(a) Using Lagrange's interpolation formula, find $\mathrm{y}(10)$ from the following table:
$\begin{array}{llll}x & : & 6\end{array}$
11
$\begin{array}{lll}\mathrm{y}: & 12 & 13\end{array}$
16
(b) The first four moments about the working mean 28.5 of a distribution are 0.294 , 7.144, 42.409 and 454.98. Calculate the moments about the mean. Also evaluate β_{1} and β_{2} and comment upon the skewness and kurtosis of the distribution.
(c) Using the Fourier integral transformation, show that $e^{-a x}=\frac{2 a}{\pi} \int_{0}^{\infty} \frac{\cos s x}{s^{2}+a^{2}} d s, \quad a>0, x \geq 0$.
4. Attempt any two parts of the following:
(a) Evaluate by Cauchy integral formula $\oint_{C} \frac{z^{2}-2 z}{(z+1)^{2}\left(z^{2}+4\right)} d z$ whereC is the circle $|z|=3$.
(b) Solve $\mathrm{x}^{3}-5 \mathrm{x}+3=0$ by using Regula - Falsi method.
(c) Using the Z-transform solve the following difference equations:
$y_{k+2}+6 y_{k+1}+9 y_{k}=2^{k}$ given $y_{(0)}=0, y_{(1)}=0$.
5. Attempt any two parts of the following:
(a) If $f(z)=u+i v$ is analytic function and $u-v=e^{x}(\cos y-\sin y)$, find $\mathrm{f}(\mathrm{z})$ in terms of z.
(b) Using poisson distribution, find the probability that the ace of spades will be drawn from a pack of well shuffled cards at least once in 104 consecutive trails.
(c) Find $\int_{0}^{6} \frac{\mathrm{e}^{\mathrm{x}}}{1+\mathrm{x}} \mathrm{dx}$ approximately using Simpson's $3 / 8$ rule on integration.
6. Attempt any two parts of the following:
(a) The table given below reveals the velocity ' v ' of a body during the time ' t ' specified.

Find its acceleration at $\mathrm{t}=1.1$.
t : 1.0
$1.1 \quad 1.2$
$1.3 \quad 1.4$
v :
43.1
$47.7 \quad 52.1$
56.4
60.8
(b) Using Complex integration method to evaluate $\int_{0}^{2 \pi} \frac{\cos 2 \theta}{5+4 \cos \theta} d \theta$.
(c) Compute $f^{\prime}(3)$ from the following table

x	$:$	1	2	4	8	10
y	$:$	0	1	5	21	27

7. Attempt any two parts of the following:
(a) Using picards method obtain y for $\mathrm{x}=0.2$, Given $\frac{d y}{d x}=x-y$ with initial condition $\mathrm{y}=1$, when $\mathrm{x}=0$.
(b) Discuss the Newton-Raphson method and prove that the order of convergence of Newten-Raphson method is quadratic.
(c) Fit a relation $y=a x+\frac{b}{x}$ which satisfies the following data , using method of least square.

x	1	2	3	4	5	6	7	8
y	5.4	6.2	8.2	10.3	12.6	14.8	17.2	19.5

