Printed pages: 3 Paper ID: 9 0 6 3 Roll No.

Sub Code: NAS-301

B-TECH (SEM. III) THEORY EXAMINATION 2017-18 Engg. Mathematics-III

Time: 3 Hours [Total Marks: 100]

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION-A

1. Attempt all questions in brief.

2x10 = 20

- a) Find inverse Z-transformation of $\frac{z}{z^2-1}$.
- b) If $u(x, y) = x^2 y^2$, prove that u satisfies Laplace equation.
- c) Evaluate $\int_{C}^{\infty} \frac{z^2 + 1}{z^2 1} dz$ where C is circle |z| = 3/2.
- d) Expand $\frac{1}{(z+1)(z+3)}$ in the regions |z| < 1.
- e) Estimate the production for 1964 and 1966 from the following data

Year:

1961

1962 1963 1964

1965 1966

1967

Production:

200 220

260

350

430

- f) State Gregory-Newton divided difference interpolation formula.
- g) Find Z-transformation of $f(k) = \begin{pmatrix} 1, & k = 0 \\ 0, & k \neq 0 \end{pmatrix}$
- h) State Cauchy's integral theorem.
- i) Prove that: $\Delta \log f(x) = \log[1 + \frac{\Delta f(x)}{f(x)}]$
- j) Define kurtosis of a distribution.

SECTION-B

2. Attempt any three parts of the following:

 $(3 \times 10 = 30)$

a) Find the Fourier transform of $F(x) = \begin{cases} 1, & |x| < a \\ 0, & |x| > a \end{cases}$

hence evaluate $\int_0^\infty \frac{\sin x}{x} dx$

b) Examine the nature of the function $f(z) = \begin{cases} \frac{x^2y^5(x+iy)}{x^4+y^{10}}; z \neq 0\\ 0 & z = 0 \end{cases}$

In the region including the origin.

c) Solve the following system of linear equations by Crout's Method:

$$x + y + z = 3$$
; $2x - y + 3z = 16$; $3x + y - z = -3$

d) Find the rank correlation coefficient of marks of A and B from the following drawaw.aktuonline.com

Marks A	15	20	27	13	45	60	20	75
Marks B	50	30	55	30	25	10	30	70

e) Solve the following differential equations using Runge- Kutta method:

Solve
$$\frac{dy}{dx} = \frac{1}{x+y}$$
 for $x = 0.5$, to $x = 1$, $h = 0.5$ with $y(0) = 1$.

SECTION-C

3. Attempt any two parts of the following:

$$(2 \times 5 = 10)$$

(a) Using Lagrange's interpolation formula, find y(10) from the following table:

- (b) The first four moments about the working mean 28.5 of a distribution are 0.294, 7.144, 42.409 and 454.98. Calculate the moments about the mean. Also evaluate β_1 and β_2 and comment upon the skewness and kurtosis of the distribution.
- (c) Using the Fourier integral transformation, show that

$$e^{-ax} = \frac{2a}{\pi} \int_{0}^{\infty} \frac{\cos sx}{s^2 + a^2} ds, \ a > 0, x \ge 0.$$

4. Attempt any two parts of the following:

$$(2 \times 5 = 10)$$

- (a) Evaluate by Cauchy integral formula $\oint_C \frac{z^2 2z}{(z+1)^2(z^2+4)} dz$ where C is the circle |z| = 3.
- (b) Solve $x^3 5x + 3 = 0$ by using Regula Falsi method.
- (c) Using the Z-transform solve the following difference equations:

$$y_{k+2} + 6y_{k+1} + 9y_k = 2^k$$
 given $y_{(0)} = 0$, $y_{(1)} = 0$.

5. Attempt any two parts of the following:

$$(2 \times 5 = 10)$$

- (a) If f(z) = u + iv is analytic function and $u v = e^x(\cos y \sin y)$, find f(z) in terms of z.
- (b) Using poisson distribution, find the probability that the ace of spades will be drawn from a pack of well shuffled cards at least once in 104 consecutive trails.
- (c) Find $\int_0^6 \frac{e^x}{1+x} dx$ approximately using Simpson's 3/8 rule on integration.

6. Attempt any two parts of the following:

 $(2 \times 5 = 10)$

(a) The table given below reveals the velocity 'v' of a body during the time't' specified.

Find its acceleration at t=1.1.

t : 1.0 1.1 1.2 1.3 1.4

v : 43.1 47.7 52.1 56.4 60.8

- (b) Using Complex integration method to evaluate $\int_0^{2\pi} \frac{\cos 2\theta}{5+4\cos \theta} d\theta$.
- (c) Compute f'(3) from the following table

x : 1 2 4 8 10

y : 0 1 5 21 27

7. Attempt any two parts of the following:

 $(2\times5=10)$

- (a) Using picards method obtain y for x=0.2, Given $\frac{dy}{dx} = x y$ with initial condition y=1, when x=0.
- (b) Discuss the Newton-Raphson method and prove that the order of convergence of Newten-Raphson method is quadratic.
- (c) Fit a relation $y = ax + \frac{b}{x}$ which satisfies the following data, using method of least square.

X	1	2	3	4	5	6	7	8
у	5.4	6.2	8.2	10.3	12.6	14.8	17.2	19.5