

					Pri	intec	l Pa	ge: 1	l of 4	+
				Sub	ject	Cod	le: ŀ	COF	031	
Roll No:										

BTECH (SEM III) THEORY EXAMINATION 2021-22 ENGINEERING MECHANICS

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1.	Attempt all questions in brief.	2 x 10 =	= 20
-			

$\overline{}$	Question	Marks	CO
a.	What is the difference between collinear and concurrent forces?	2	1
ъ.	Define the Limiting angle of friction.	2	1
c.	What is truss? Explain its types.	2	2
d.	Define the types of loads & supports in a beam.	2	2
e.	Define Mass moment of inertia & Area moment of inertia.	2	3
f.	What do you mean by types of motion?	2	3
g.	Explain D'Alembert's principle with suitable example.	2	4
h.	Define the longitudinal & lateral strain.	2	4
i.	What do you mean by pure bending in beams?	2	5
i.	Define a shaft & torsional rigidity.	2	5

Z.	Attempt any three of the following \ \ \ / \	` <i>\</i>	
Q no.	Question	Maglas	CO
a.	Four forces act tangentially to a such of radius 200 mm as shown in figure. Find the magnitude, inclination & distance of the resultant from center of circle.		1
b.	Draw the shear force & bending moment diagram for a loaded beam as shown in figure.	10	2

					Pri	intec	l Pa	ge: 2	of 4	
				Sub	ject	Cod	le: ŀ	OF	031	
Roll No:	Ĩ			Ī						

BTECH (SEM III) THEORY EXAMINATION 2021-22 ENGINEERING MECHANICS

SECTION C

3. Attempt any one part of the following:

	recempt any one part of the following.		
Q no.	Question	Marks	CO
a.	A ladder 7 m long rests against a vertical wall with which is makes an angle 45° & resting on a floor. If a man whose weight is one half of that the ladder		1

Printed Page: 3 of 4
Subject Code: KOE031
Roll No:

BTECH (SEM III) THEORY EXAMINATION 2021-22 ENGINEERING MECHANICS

					Pri	intec	l Pa	ge: 4	of 4	+
				Sub	ject	Cod	le: ŀ	COF	031	
Roll No:		Ĭ								

BTECH (SEM III) THEORY EXAMINATION 2021-22 ENGINEERING MECHANICS

5. Attempt any one part of the following:

Q no.	Question	Marks	CO
a.	Determine the moment of inertia of the 'L' section with respect to centroidal X-X axis. Section as shown in figure.	10	3
b.	Derive an expression for mass moment of inertia about axis of symmetry for right solid circular cone.	a 10	3

6. Attempt any one part of the following:

Question	Marks	(de)
The equation of motion of a particle month in a straight line is given by:	10 0	4
$s = 9t + 7t^2 - 1.5t^3$, where s is the oral, distance covered from the starting	·50.	
point in meters at the end of t seconds. Find the following:	5	
Two bodies A and B of masses, kg and 20 kg are connected by an inclined string. A horizontal force P of 100 N is applied to block B. Calculate the tension in the string and acceleration of the system. Take coefficient of friction for all surfaces as 0.25. Refer figure.	10	4
	The equation of motion of a particle moving in a straight line is given by: s = 9t+ 7t²-1.5t³, where s is the total, distance covered from the starting point in meters at the end of t seconds. Find the following: Two bodies A and B of masses, kg and 20 kg are connected by an inclined string. A horizontal force P of 100 N is applied to block B. Calculate the tension in the string and acceleration of the system. Take coefficient of friction for all surfaces as 0.25. Refer figure.	The equation of motion of a particle moving in a straight line is given by: s = 9t+ 7t²-1.5t³, where s is the total, distance covered from the starting point in meters at the end of t seconds. Find the following: Two bodies A and B of masses, kg and 20 kg are connected by an inclined string. A horizontal force P of 100 N is applied to block B. Calculate the tension in the string and acceleration of the system. Take coefficient of friction for all surfaces as 0.25. Refer figure.

7. Attempt any *one* part of the ollowing:

Q no.	Question	Marks	CO
a.	Derive the Bending equation for pure bending in beams with assumptions. Also define the neutral axis & section modulus for a beam.	10	5
b.	Calculate the suitable diameter for a solid circular shaft to transmit 60 kW power at 200 rpm , if the twist is not to exceed 2° in 3 m length of the shaft and maximum shear stress is limited to 70 MN/m^2 . Take shear modulus $G = 90 \text{ GPa}$.		5