Paper Id:

910196

Roll No: Sub Code:RAS301

B TECH (SEM III) THEORY EXAMINATION 2019-20 MATHEMATICS -III

Time: 3 Hours Total Marks: 70

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 7 = 14$

- a. Define analytic function.
- b. Define the Binomial distribution with mean and variance.
- c. Write the normal equation for the curve $y = \frac{a}{x} + bx$
- d. Give comparison between Regula-falsi method and Newton Raphson method.
- e. Write the relation between nth divided difference and nth forward difference.
- f. What do you mean by initial value problem?
- g. Find $Z^{-1}\left(\frac{5}{5z-1}\right)$

SECTION B

2. Attempt any three of the following:

 $7 \times 3 = 21$

- a. Show that the function $f(z) = \sqrt{|xy|}$ is not analytic at origin even though CR equations are satisfied at origin.
- b. Find the measure of skewness and kurtosis based on moments for the following distribution and draw your conclusion

Marks	5-15	15-25	25-35	35-45	45-55
No. of students	1	3	5	7	4

c. Decompose $A = \begin{bmatrix} 5 & -2 & 1 \\ 7 & 1 & -5 \\ 3 & 7 & 4 \end{bmatrix}$ in the form LU, where L is lower triangular

matrix and U is upper triangular matrix and hence solve the system of equations:

$$5x - 2y + z = 4$$

 $7x + y - 5z = 8$
 $3x + 7y + 4z = 10$.

d. Express the function $f(x) = \begin{cases} 1 & when |x| \le 1 \\ 0 & when |x| > 1 \end{cases}$ as a Fourier Integral.

Hence evaluate
$$\int_0^\infty \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$$
.

OR

Find the value of u(x,t) satisfying the parabolic equation $\frac{\partial u}{\partial t} = 4 \frac{\partial^2 u}{\partial x^2}$ with boundary

conditions u(0,t) = 0 = u(8,t) and $u(x,0) = 4x - \frac{x^2}{2}$ at the points

$$x = i, i = 0,1,2,3,......7$$
 and $t = \frac{1}{8}j : j = 0,1,2,.....,5$

e. Given the initial value problem $\frac{dy}{dx} = x^3 - y^3$, y(0) = 1. Find the numerical solution of differential equation at x = 0.4 with h = 0.2 by using Runge-Kutta method of Fourth order.

910196

Roll No:

SECTION C

3. Attempt any *one* part of the following: $7 \times 1 = 7$

- Evaluate the integration: $\int_0^{\pi} \frac{d\theta}{3 + 2\cos\theta}$
- (b) State Cauchy Integral formula and hence evaluate $\oint_C \frac{\cos \pi z^2}{(z-1)(z-2)} dz$, where C is the circle |z| = 3.
- 4. Attempt any one part of the following:

 $7 \times 1 = 7$

- Find Fourier cosine transform of $\frac{1}{1+x^2}$ and hence find Fourier sine transform of $\frac{x}{1+x^2}$
- (b)

Find the inverse Z-transform of
$$F(z)$$
, where $F(z)$ is given by
$$(i) \qquad \frac{z}{(z+2)(z+3)} (ii) \frac{7z-11z^2}{(z-1)(z-2)(z+3)}.$$

(a) Classify the PDE
$$x^2 \frac{\partial^2 u}{\partial x^2} + 2xy \frac{\partial^2 u}{\partial x \partial y} + y^2 \frac{\partial^2 u}{\partial y^2} = 0$$

(b) Solve
$$\frac{\partial^2 u}{\partial t^2} = \frac{\partial^2 u}{\partial x^2}$$
 with conditions

$$u(0,t) = u(1,t) = 0;$$
 $u(x,0) = \frac{x(1-x)}{2}$ and $u_t(x,0) = 0$, taking

$$h = k = 0.1$$
 for $0 \le t \le 0.4$.

5. Attempt any one part of the following: $7 \times 1 = 7$

In a partially distributed laboratory record of an analysis of a correlation data, the (a) following result are legible:

Variance of x = 9

Regression equation: 8x - 10y + 66 = 0,40x - 18y = 214.

What were (i) the mean values of x and y. (ii) the standard deviation of y and the coefficient of correlation between x and y.

- (b) Find the mean and variance of normal distribution.
- 6. Attempt any one part of the following:

 $7 \times 1 = 7$

- Find the real root of the equation $x^3 2x + 5 = 0$ by method of False position correct (a) three decimal places.
- (b) State Lagrange interpolation formula. Find the interpolating polynomial by Lagrange interpolation formula for the given data

x	5	6	9	11
у	12	13	14	16

7. Attempt any one part of the following:

- Apply Simpson's 3/8th rule to obtain approximate value of (i) $\int_0^{\pi/2} e^{Sin x} dx$ (ii) (a) $\int_0^{0.3} (2x - x^2)^{1/2} dx$ using Simpson's rule with 6 interval.
- Find x for which y is maximum and find the max value of y(b)

x	1.2	1.3	1.4	1.5	1.6
у	0.9320	0.9636	0.9855	0.9975	0.9996