Paper Id:

199271
Roll No. \square

B. TECH.
 (SEM IV) THEORY EXAMINATION 2018-19
 APPLIED LINEAR ALGEBRA

Time: 3 Hours
Total Marks: 70
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.
a. Show that the vectors $(1,2,3)$ and $(2,-1,0)$ are linearly independent in R^{3}.
b. Define linear transformation.
c. Find if the linear transformation $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(x+y, x+y)$ is invertible?
d. Write polarization identity.
e. Write Minkowski Inequality.
f. Define linear functional.
g. Show that the vectors $(1,1,0),(0,1,1),(1,0,1)$ form a basis of \square^{3}.

SECTION B

2. Attempt any three of the following:
a. Prove that the intersection of two subspaces of a vector space $V(F)$ is a subspace of $V(F)$.
b. Let T be the linear transformation from $\mathbf{R}^{3} \rightarrow \mathbf{R}^{2}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}, 2 x_{3}-x_{1}\right)$.
If $\beta=\{(1,0,-1),(1,1,1),(1,0,0)\} \beta^{\prime}=\{(0,1),(1,0)\}$, be ordered bases of $\mathbf{R}^{\mathbf{3}}, \mathbf{R}^{\mathbf{2}}$, respectively, then find the matrix of T relative to β, β^{\prime}. Also, find rank (T) and nullity (T).
c. If V and W are two vector spaces (over F) of dimensions m and n, respectively; then prove that $\operatorname{Hom}(V, W)$ is a vector space over F of dimension $m n$.
d. If $V(F)$ is an inner product space, then show that :
$|(u, v)| \leq\|u\|\|v\|$, for all $u, v \in V(F)$.
e. Is the matrix
$A=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$ similar over the field R to a diagonal matrix? Is A similar over the field C to a diagonal matrix?

SECTION C

3. Attempt any one part of the following:
(a) Show that $S=\{(1,0,-1,0),(2,1,3,0),(-1,0,0,0),(1,0,1,0)\}$ is a linearly
dependent set in R^{4}.
(b) Prove that every finite dimensional vector space $V(F)$ has a basis.
4. Attempt any one part of the following:
(a) Let V, W be two finite-dimensional vector space over a field F and let T be a linear transformation from V into W. Suppose that V is a finite dimensional. Show that: $\operatorname{rank} T+$ nullity $T=\operatorname{dim} V$.
(b) Let $T: \mathbf{R}^{2} \rightarrow \mathbf{R}^{3}$ be the linear transformation defined by $T(x, y)$ $=(x+y, x-y, y)$. Find Ker T and Range T .
5. Attempt any one part of the following:
(a) Let T be a linear operator on C^{3} defined by $T(1,0,0)=(1,0, i), T(0,1,0)=$ $=(0,1,1), T(0,0,1)=(i, 1,0)$. Is T is invertible? Justify your answer.
(b) Let $T: R^{2} \rightarrow R^{2}$ be a linear transformation such that $T(1,1)=(1,3)$, $T(-1,1)=(3,1)$. Find $T(a, b)$ for any $(a, b) \in R^{2}$.
6. Attempt any one part of the following:
(a) Obtain an orthonormal basis for V, the space of all real polynomials of degree at most 2 , the inner product being defined by
$(f, g)=\int_{0}^{1} f(x) g(x) d x$.
(b) Apply the Gram-Schmidt process to vectors $\beta_{1}=(1,0,1), \beta_{2}=(1,0,-1), \beta_{3}=$ $(0,3,4)$ to obtain an orthonormal basis for $V_{3}(R)$ with the standard inner product.
7. Attempt any one part of the following:
(a) Find the eigenvalues, eigenvectors and the Eigen spaces of the matrix
$A=\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$. Is A is diagonalizable?
(b) Define unitary, normal, adjoint and self adjoint operators on an inner product space. Give examples in each case.
