Printed Pages: 02
 Sub Code: NOE048 / EOE048

 Paper Id: 1 9 9 4 1 8
 Roll No. | | | | | | |

B.TECH

(SEM IV) THEORY EXAMINATION 2017-18 DISCRETE MATHEMATICS

Time: 3 Hours Total Marks: 100

Note: Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a. Define power set? Also find power set of a set $A = \{\emptyset, \{\emptyset\}\}\$
- b. Define a relation R which is neither reflexive nor irreflexive but symmetric and transitive for a set $A = \{1, 2, 3, 4\}$.
- c. Define truth table of a statement of two variables which is always true
- d. Find a formula F that uses the variable p, q and r such that F is a contradiction.
- e. Write a recurrence relation of homogeneous and non homogeneous both of order 2 and degree 2.
- f. Define generating function with example.
- g. Define semi-group.
- h. Define permutation group.
- i. Give an example of graph which is connected, regular and complete.
- j. What is DFA machine?

SECTION B

2. Attempt any *three* of the following:

 $10 \times 3 = 30$

- a. Define relations and its different representations. Let S be a binary relation defined as $S = \{ (a, b) : a b \le 3 \text{ and } a, b \in R \}$. Determine whether S is reflexive, symmetric, anti-symmetric and transitive
- b. Define proposition and its connectives. Also prove that $(p \lor q) \to (p \land q)$ is logically equivalent to $p \leftrightarrow q$.
- c. Solve the recurrence relation

$$a_n - 4a_{n-1} + 4a_{n-2} = 1, \forall n \ge 2 \text{ with } a_0 = 0, a_1 = 1$$

- d. What is abelian group? Also show that the set of rational numbers Q forms a group under the binary operation * defined by a * b = a + b ab, $\forall a,b \in Q$. is this abelian group?
- e. Define tree and its properties. Also explain preorder, inorder and postorder of tree with the help an example.

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Define function and its type with example.
- (b) To prove that $X (Y \cup Z) = (X Y) \cap (X Z)$

Also verify for the set $X = \{1,2,3\}, Y = \{2,3,4\}, Z = \{1,2,3\}$

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) Explain the quantifiers in details. Also write the following English language into symbolic statement.

"Every students of this class is either hosteller or non-hosteller"

(b) Define converse, inverse and contra-positive statements. Also write converse, inverse and contra-positive statements for the following statement.

"If I will secure position in university then I will be awarded by university"

5. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) Define recurrence relation of n^{th} order. Solve the following recurrence relation with $a_0=a_1{=}3$,

 $a_n = 5a_{n-1} + a_{n-2}, n > 1$

(b) What is mathematical induction? Also prove that $n < 2^n$ for all positive integral value of n.

6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) What is Ring? Prove that set I of all integers is a ring with respect to addition and multiplication of integers as the ring composition.
- (b) Show that the set of all nth roots of unity forms a group with respect to multiplication

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) Make a Binary search tree for the following sequence of numbers:

Also find the preorder, inorder and postorder of the resultant tree.

(b) Define NFA machine. Design a NFA machine for the language ending with ab over $\Sigma = \{a, b\}$. Also convert into its equivalent DFA machine.