(Following Paper ID and Roll No. to be filled in your Answer Boolk)
 Roll No.

B. Tech
(SEM II) ODD SEMESTER THEORY EXAMMNATION 2009-10 FLUID MECHANICS

Tine: 3 Hows
[Total Marks : 100

Note : (1) ftrempt all five questions.
(2) The figures on the right hand side indicate marks.
(3) Thesing data if any, moy suitably be assumed.
t) Be precise in your answers.

1 Attempt any two parts : $10 \times 2=20$
(a) Differentiate between
(i) Stability conditions for immersed and floating bodies
(ii) Absolute, Gauge, Atmospheric and Tacuum pressure using sketch also give the relation between them.
(b) What is the difference between Eulerian and Langrangian approach ? Define Manometers.
(c) A pipe tapers from 250 mm to 125 mm when the rate of flow of the liquid in the pipe is $2400 \mathrm{lit} / \mathrm{min}$. Calculate the average velocity of flow at the two sections.
5.4070] |IIII |IITH| H||IIII 1

2 Attempt any four parts :
(a) What is continuum ? Some insects walk on water ? Why ?
(b) Define centre of Buoyancy and Metacentre.
(c) An oil of specific gravity 0.9 and viscosity 10 poise is flowing through a pipe of diameter 110 mm . The velocity at the centre is 2 mtr . Find the pressure gradient in the direction flow and shear stress at the pipe wall.
(d) Prove stream function (ψ) and potential function
(ϕ) are orthogonal to each other.
(e) What are the similarity laws ? What is their importance in model testing ?
(f) One litre crude oil weighs 9.6 N . Calculate its specific gravity, density and specific weight.

3 Attempt any two parts :
$10 \times 2=20$
(a) A two dimensional flow is described by the velocity components $\mu=5 x^{3}$ and $V=-15 x^{2} y$. livaluate the stream function velocity and acceleration at point $p(x=1 \mathrm{mtr}, y=2 \mathrm{~m})$.
(b) State the momentum equation and what is the dillerence between pitot tube and pitot static tube?

uptuonline.com
[Contd...
(a) A metallic sphere of sp. gr. 7.0 falls an oil of density $800 \mathrm{~kg} / \mathrm{m}^{3}$. the diameter of the sphere is 8 mm and it attains a terminal velocity of $40 \mathrm{~m} / \mathrm{s}$. Find the viscosity in poise.
(b) (i) Define and discuss hydraulic gradient and total energy lines with figure.
(ii) Water flows through a pipe of diameter 120 mm . The velocities at the pipe axis and 40 mm from the pipe axis are $4 \mathrm{~m} / \mathrm{s}$ and $3 \mathrm{~m} / \mathrm{s}$ respectively. Determine the wall shear stress.
(c) Define displacement thickness. Derive an expression for momentum thickness for boundary layer flow.

