Printed Pages: 2 Roll No. NCH601

B. TECH.

THEORY EXAMINATION (SEM-VI) 2016-17 CHEMICAL REACTION ENGINEERING-II

Time: 3 Hours Max. Marks: 100

Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION - A

1. Define the following:

 $10 \times 2 = 20$

- (a) Void fraction.
- (b) Catalyst activity.
- (c) Solid density and particle density.
- (d) Catalyst deactivation.
- (e) Catalyst Promoter
- (f) Effectiveness factor
- (g) Chemisorption
- (h) Enhancement factor
- (i) Steps of a catalytic reaction
- (i) Microbial reaction

SECTION - B

2. Attempt any five of the following questions:

 $5 \times 10 = 50$

- (a) (i) Describe a method to determine pore volume in catalyst.
 - (ii) Define adsorption? Also explain two types of adsorption in a catalytic reaction.
- (b) (i) Explain the various types of catalyst deactivation.
 - (ii) Explain the catalyst preparation method.
- (c) (i) Explain shrinking core model with the help of diagram.
 - (ii) Derive relation between t/τ and X_B for SCM for ash layer diffusion control.
- (d) Solid particles of B are roasted with gas A to give a firm non-flaking product according to SCM $A(g)+B(s)\rightarrow R(g)+S(s)$, $C_A=0.01 \text{ kmol/m}^3$, molar density=20 kmol/ m³. From the following data, find the rate controlling mechanism.

dp, mm	$\mathbf{X}_{\mathbf{B}}$	t. min
1	1	4
1.5	1	6

- (e) Calculate the time needed to burn to completion particles of graphite (R_0 =5mm, ρ =2.2gm/cc, k =20 cm/sec) in an 8% oxygen stream. For the high gas velocity used assume that film diffusion does not offer any resistance to transfer and reaction. Reaction Temp = 900 0 C, P=1 atm.
- (f) What are the factors to be considered in selecting a contactor also discuss the role of Hatta number, M_H .
- (g) Mass of catalyst =101.5 gm, vol. of Helium displaced =45.1 cm³, vol. of Hg displaced =82.7 cm³. Calculate the pore volume, porosity, solid density and particle density?
- (h) (i) Explain Thiele Modulus
 - (ii) Explain Michaelis-Menten kinetics for enzyme reaction

SECTION - C

Attempt any two of the following questions:

 $2 \times 15 = 30$

3. (i) Write a short note on Microbial Fermentation.

- (ii) For the reaction A \rightarrow 4R, -r_A=96 C_A mol/kg cat.hr, mixed flow reactor is used for 35% conversion of A to R for a feed rate of 2000 mol/hr of 80% pure A at 3.2 atm and 117 0 C. If C_{A0}=0.1 mol/l, determine the amount of catalyst needed.
- 4. (i) For fluid- fluid reaction derive the rate expressions for different cases of mass transfer and reaction Case A:Instatantaneous reaction with low C_B , Case B:Instatntaneous reaction with high C_B
 - (ii) Derive the overall rate expression for Cumene decomposition into Benzene and Propylene, assuming single site mechanism and adsorption step be rate controlling.
- Air with gaseous A bubbles through a tank containing aqueous B. Reaction occurs as follows: $A(g)+2B(1)\rightarrow R(1)$ $r_A=kC_AC_B^2$, $k=10^6$ m⁶/mol².hr for this system, $k_{Ag}a=0.01$ mol/hr.m³.Pa $k_{Al}a=20$ /hr $D_{Al}=D_{Bl}=10^{-6}$ m²/hr $f_1=0.98$ a=20 m²/m³ $H_A=10^5$ Pa.m³/mol, pA= 5×10^3 Pa and $C_B=100$ mol/m³ Determine the behavior of reaction, location of resistance to reaction and the rate of reaction.