Printed Pages: 3

ECH021

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID : 151654

Roll No.

B. Tech.

(SEM. VI) THEORY EXAMINATION, 2014-15

OPTIMIZATION TECHNIQUE IN CHEMICAL ENGINEERING

Time: 2 Hours [Total Marks: 50

Note: (1) Attempt All questions.

(2) Assume suitable data, if required.

1 Attempt any four parts of the following. 3x4=12

(a) Find the volume of the largest rectangular solid inscribed in the ellipsoid.

$${x^2/a^2} + {y^2/b^2} + {z^2/c^2} = 1$$

(b) Find the maximum and minimum values of the function.

$$f(x) = 12x^5 - 45x^4 + 40x^3 + 5$$

(c) Find the maximum and minimum values of the function.

$$f(x, y) = x^3 + y^3 - 3x - 12y + 25$$

151654]

1

[Contd...

- (d) Enumerate the Scope and limitations of optimization techniques.
- (e) Write short note on "Feasible solution and feasible region".
- (f) Discuss about constrained optimization problems.
- 2 Attempt any two parts of the following. 7x2=14
 - (a) Define a linear programming problem. Solve the following linear programming problem (LPP) by graphical method.

Maximize 5x + 3ySubject to $4x + 5y \le 10$ $5x + 2y \le 10$ $3x + 8y \le 12$ and x > 0, y > 0

(b) Solve the following LPP graphically.

Min
$$z = 2x_1 + x_2$$

Subject to $3x_1+x_2 \ge 3$
 $4x_1 + 3x_2 \ge 6$
 $x_1 + 2x_2 \ge 2$
and $x_1, x_2 \ge 0$

(c) Find the maximum of f = x (1.5-x) in the interval (0,0,1.00) within 10% of exact value.

- 3 Attempt any two parts of the following: $6 \times 2 = 12$
 - (a) Define a transportation problem. Prove that every transportation problem has a feasible solution.
 - (b) Obtain a basic feasible solution of the following transportation problem.

3	5	6	4	1700
6	8	2	3	1900
5	7	4	11	1000
8	5	13	10	1400
1000 1200 1500 2300				

- Describe Fibonacci search method for a unimodel (c) function of a single variable.
- Attempt any two parts of the following. 6x2 = 124
 - Discuss the scope and hierarchy of optimization. (a)
 - State Newton-Raphson method for finding the (b) points of maximum/minimum of an universal function. Hence find the point of minimum of the function.

$$f(x) = x^2 + 54/x$$

Find the dimensions of cylindrical tin (with top (c) and bottom) made up of sheet metal to maximize its volume such that the total surface area is equal to $A_0 = 24\pi$.

to
$$A_0 = 24\pi$$