Printed Pages: 3

ECH-701

(Following Paper ID and Roll No. to be filled in your Answer Book)										
PAPER ID : 151701										
Roll No.										

B. Tech.

(SEM. VII) (ODD SEM.) THEORY EXAMINATION, 2014-15

PROCESS MODELLING AND SIMULATION

Time: 3 Hours [Total Marks: 100

1 Attempt any four parts:

 $5 \times 4 = 20$

- a) What is mathematical model? Discuss its applications in unit operations.
- b) Classify different models. Differentiate simple and rigorous models.
- c) Discuss about the numerical software's available for mathematical modeling and simulation.
- d) Explain why modeling assumptions are important in the building of a model.
- e) With a suitable example discuss the application of total continuity equation and component continuity equation in developing a mathematical model.
- f) Briefly explain the principles of formulation of mathematical models.

151701] 1 [Contd...

2 Attempt any two parts:

 $10 \times 2 = 20$

- a) Consider a simple reactor with two components (biomass and substrate). The reactor is perfectly mixed. The biomass is nothing but the cells that consume the substrate. Let X_1 be the biomass concentration and X_2 be the substrate concentration. Derive the dynamic model by developing a material balance on the biomass and substrate.
- b) Develop a mathematical model of jacketed tubular reactor.
- c) Derive a model for absorber and state assumptions.

3 Attempt any two parts:

 $10 \times 2 = 20$

- a) Explain distributed parameter model for packed bed.
- b) Discuss the modeling of reactive separation processes.
- c) Write a numerical method of analysis to solve differential equations code for MATLAB software.

4 Attempt any two parts :

 $10 \times 2 = 20$

- a) Elobarate time dependent models and their applications.
- b) Describe model reduction through orthogonal collocation.
- c) i) An ice cube is dropped into a glass of water at room temperature and then stirred. Develop a model describing the time varying behavior of the system with all the required assumptions.

151701] 2 [Contd...

ii) A tank is used to dissolve a solid into a liquid solvent. The tank is provided with an agitator. This tank acts as a batch system. Do the modelling with respect to liquid as well as solid phases.

5 Attempt any two parts:

 $10 \times 2 = 20$

- a) Explain the flow sheet simulation with a model as example.
- b) Discuss about artitioning and tearing.
- c) Write a review of thermodynamic procedures and physical property data banks.
