Printed Pages: 4

ECH051

(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID: 151851										
Roll No.										

B.Tech

(SEM. VIII) THEORY EXAMINATION 2014-15 ADVANCE SEPARATION TECHNOLOGY

Time: 3 Hours [Total Marks: 100

Note: Attempt all questions. Assume suitable data, if required. All questions carry equal marks.

- 1 Attempt any four parts of the following: 5x4=20
 - (a) Write notes on characteristics of membrane.
 - (b) What is the difference between equilibrium governed separation processes and governed separation processes?
 - (c) Explain the uses and characteristics of separation processes.
 - (d) What are the practical applications of liquid membranes?
 - (e) Define silt density index.
 - (f) Write the separation processes used in chemical and biochemical industries.

151851] 1 [Contd...

- Attempt any four parts of the following: $5\times4=20$
 - (a) Explain the characteristics of ideal cascade.
 - (b) How polymeric membranes are characterized?
 - (c) Give at least four examples of the applications of per vaporation.
 - (d) Write a note on energy requirement for separation process.
 - (e) On which principle does the reverse osmosis work? Give few applications of reverse osmosis.
 - (f) Write the phenomenon of membrane separation processes.
- 3 Attempt any two parts of the following: 10x2=20
 - (a) Describe the different kinds of liquid membranes in details. Mention the areas where these membranes are used.
 - (b) Describe the principle and operation of molecular sieves for separation process. Also discuss some mathematical parameters of importance related to molecular sieves.
 - (c) A liquid containing dilute solute A at a concentration $c_1 = 3 \times 10^{-2} \, \text{kgmol/m}^3$ is flowing rapidly by a membrane of thickness L=3×10⁻⁵m. The distribution coefficient K'=1.5 and $D_{AB} = 7 \times 10^{-11} \, \text{m}^2/\text{s}$ in the membrane . The solute diffuses through the membrane and its concentration on the other side

151851] 2 [Contd...

is $c_2 = 0.5 \times 10^{-2}$ kgmol/m³. The mass transfer coefficient kc₁ is large and can be considered as infinite and $kc_2 = 2.02 \times 10^{-5}$ m/s.

- (i) Derive the equation to calculate the steadystate flux $N_{\rm A}$ and make a sketch.
- (ii) Calculate the flux and the concentration at the membrane interfaces.
- 4 Attempt any two parts of the following: 10x2=20
 - (a) Give few examples of electro dialysis. What are the advantages and disadvantages of having electro dialysis?
 - (b) A solution containing 0.9 wt% protein is to undergo ultra filtration using a pressure difference of 5 psi. The membrane permeability is $Aw = 1.37 \times 10^{-2} \text{ kg/}m^{-2} \text{ s.}$ atm .Calculate the flux for ultra filtration process. Assume no effect of polarization.
 - (c) What is reverse osmosis? Explain the effect of concentration polarization on the process.
- 5 Attempt any two parts of the following: 10x2=20
 - (a) Explain Gas -Liquid chromatography in detail.
 - (b) Differentiate between liquid permeation membrane separation and gaseous permeation membranes separation and discuss its limitations and uses.

151851] 3 [Contd...

((c)	Write	the	short	notes	on	the	foll	owing:
٠,		, ,,,,,,		DIIOIt	11000	\mathbf{v}_{11}		1011	O * * 1115

- (i) Dialysis
- (ii) Ultrafiltration
- (iii) Partial coefficient and permeability
- (iv) Polymeric membranes

151851] 4 [525]