Deinted De core 2	Subject Codes NCS 202
Printed Pages: 2	Subject Code: NCS 303
Paper Id: 110313	Roll No.
B TECH	
(SEM-III) THEORY EXAMINATION 2018-19	
COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES	
Time: 3 Hours	Total Marks: 100
Note: 1. Attempt all Sections. If require any missing data; then choose suitably.	
SECTION A	
1. Attempt <i>all</i> questions in brief.	$2 \times 10 = 20$
W C 1 . 1 1	• .• .1 1

- a. Write a formula to obtain roots in bisection method.
- b. Write an equation for $T_4(x)$ chebyshev polynomial.
- c. Define forward and backward difference operations.
- d. If $f(x)=1/x^2$, find f(a,b) and f(a,b,c) by using divided difference.
- e. What is Richardson extrapolation?
- f. Write a formula for Trapezodial rule.
- g. Write 4 point formula for Simpsons 1/3 rule.
 - h. Define Statistical Hypothesis.
 - i. Define Type-I and Type-II Errors.
 - j. Write RungeKutta's 4th order formula to solve dy/dx=f(x,y) with y(x0)=y0.

SECTION B

2. Attempt any three of the following:

 $10 \times 3 = 30$

A cromel-alumel thermocouple gives the following output for rise in a. temperature:

Temp (C^0) 0 10 20 30 40 50 Output (V) 0 0.40.8 1.2 1.61 2.02

In some determination of the value v of CO2 dissolved in water in given b. volume of water at different temperatures, the values to be obtained by method of least square, a relation of form $v=a+b\theta$ which fits to the observations.

Θ 0 10 15 1.45 1.8 1.18 1.0

- Use Birge-Vieta method to find out the roots of $x^4+x^3+5x^2+4x+4=0$ at the end c. of the iteration with initial value of $x_0=1$.
- Consider the function $x = (3 + \cos x)/2$. Obtain first three iterations x_1, x_2 and x_3 by d. fixed point iteration. Then obtain next approximation by Aitken's process Δ^2 process. Assume initial root $x_0=\Pi/2$.
- Use bisection method to find the root of the equation $x^3-1.8x^2-10x+17=0$ that e. lies between the interval (1, 2) at the end of fifth iteration.

SECTION C

3. Attempt any one part of the following:

 $10 \times 1 = 10$

- Explain Gram-schmidt orthogonalizing process to obtain orthogonal (a) polynomials.
- (b) State Chebyshev polynomial and their properties.

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- $(e^{x}+e^{-x})/2$ dx using Simpsons 1/3 rule by taking h=0.2.
- Find the output of the thermocouple for the temperature of 45°C using Newton Divided difference interpolation method.

5. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) Determine the constant a and b by the method of least square such that $y=ae^{bx}$ fits the data.

x 2 4 6 8 10 y 4.077 11.084 30.128 81.897 222.62

(b) For the following data values calculate the derivative at x=3 using Richardson extrapolation.

x -1 1 2 3 4 5 7 y 1 1 16 81 256 625 2401

6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) Find the quadratic factor of x^4 -1.1 x^3 +2.3 x^2 +.5x+3.3=0 after two iterations using Lin-Bairstow's method. Use p_0 =1 and q_0 =1.

(b) $y = x^3$ is given for x = 1, 2, 3, 4, 5. Use lagrange's formula to obtain x at y = 3.375. Compare this result with correct value 1.5.

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) With the help of Gauss elimination method find the solution.

$$3x_1+3x_2+4x_3=20$$

 $x_1+x_2+x_3=6$
 $2x_1+x_2+3x_3=13$

(b) Add the following Floating point numbers.

i) 0.3879 E7 and 0.813 E7

ii) 723.813 E14 and 89.73 E12

iii) 100.312 E25 and 81.813 E27 $\,$

NCS303: CBNST

Morning Shift Dec 31, 2018

Question 2(a)

Q2(a). A cromel-alumel thermocouple gives the following output for rise in temperature:

Temp (C^0) 0 10 20 30 40 50

Output (V) 0 0.4 0.8 1.2 1.61 2.02

Find dV/dt at t = 5°C.