Printed pages: 02 Sub Code: ECS303

Paper Id: 1 0 2 0 Roll No.

B.Tech. (SEM III) THEORY EXAMINATION 2017-18 DISCRETE MATHEMATICAL STRUCTURE

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a. Let $A = \{1, 3, 9, 27, 81\}$ draw the Hasse diagram of the POSET(A,1).
- b. How Abelian Group is different from Group.
- c. What are the types of Relations?
- d. Define Demorgan's law?
- e. Give an example of bipartite graph.
- f. Define Surjective function with an example.
- g. What are properties of monoid?
- h. Define equivalence relation with conditions?
- i. Show that set $\{1, 2, 3, 4, 5\}$ is not a group under adition modulo 6.
- j. Define Boolean function with an example.

SECTION B

2. Attempt any *three* of the following:

 $10 \times 3 = 30$

a. Prove the following using mathematical induction $a = \frac{n+1}{n}$

$$P(n)=1+a+a^2+\cdots +a^n=\frac{1-a^{n+1}}{1-a}, n \ge 1$$

- b. Let A=(1,2,3,4) and R=((1,1)(1,3)(2,2)(2,4)(3,1)(3,3)(4,2)(4,4)) show that Relation R is an equivalence relation.
- c. For the set $I_4 = \{0,1,2,3\}$ show that the modulo 4 system is a field.
- d. Let $f(x) = x^2 + 3x + 1$, g(x) = 2x-3 find fof, gof and fog.
- e. Prove the following identities.
 - i) $(A \cup B) \cup (A \cap B^c) = A$
- ii) A-B ⊆ A
- iii) $(A-C) \cap (C-B) = \emptyset$
- iv) $(A-B) \cup (A \cap B) = A$

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) If a mapping f: $A \rightarrow B$ is one to one and Onto, then prove that inverse mapping $f^{-1}: B \rightarrow A$ is also one to one and Onto.
- (b) What are Graph? How can you represent a graph? support it with an example.

4. Attempt any *one* part of the following:

10x 1 = 10

(a) Check that following argument is valid or not ? i) $P \rightarrow \neg Q$ ii) $R \rightarrow Q$

iii)
$$(P \rightarrow Q)^{\wedge} P \rightarrow Q$$

(b) Obtain the disjunctive normal form i) $P \rightarrow Q^{\wedge} (\neg P \rightarrow Q)$ ii) $(P^{\wedge} (P \rightarrow Q)) \rightarrow Q$

5. Attempt any *one* part of the following:

10x1 = 10

- (a) Define a cyclic group? Show that the set $\{1, w, w^2\}$ is a cyclic group of order 3 with generator w and w^2 with respect to multiplication, w being the cube root of unity.
- (b) Draw the graph:
 - i) Graph having Euler's circuit and Hamiltonian circuit both.
 - ii) Graph having Euler's circuit but not Hamiltonian circuit.
 - iii) Graph having neither Euler nor Hamiltonian circuit.
- 6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Solve the following recurrence relation using Generating function $a_r 5a_{r-1} + 6a_{r-2} = 2^r + r$, $r \ge 2$, $a_0 = 1 = a_1$
- (b) If R is a relation on the set of integers such that, $(a,b) \in R$ iff $b = a^m$ for some positive integers m_0 show that R is partial ordering.
- 7. Attempt any *one* part of the following:

10x1 = 10

- (a) Simplify following expression using k-map $Z = BD + AB^cC^c + A^cBC^c + A^cCD + A^cB^cD^c$ also convert it into POS form.
- (b) What is meant by minimum spanning tree? Explain kruskal's method to find minimum spanning tree in a Graph.