(Following Paper ID and Roll No. to be filled in your Answer Book)											
PAPER ID: 0321	Roll No.										

B.Tech.

(SEM. III) THEORY EXAMINATION 2011-12 ANALOG AND DIGITAL ELECTRONICS

Time: 3 Hours

Total Marks: 100

- Note :- (1) Answer all questions.
 - (2) All questions carry equal marks.
- 1. Attempt any four parts of the following: $(5\times4=20)$
 - (a) Explain the working of tunnel diode. Enlist its applications.
 - (b) Discuss how the variable capacitance is achieved in varactor diode. Enlist the application of varactor diode.
 - (c) Define "Dark current" in photodiode. Why photodiode is always used in reverse bias conditions?
 - (d) Explain the principle and working of light emitting diode (LED) with V-1 characteristic.
 - (e) How the construction of the Schottky barrier diode is different from conventional semiconductor diode significantly and describe its mode of operation.
 - (f) Explain the working of transistor as switch.

- 2. Attempt any two parts of the following: $(10\times2=20)$
 - (a) Draw the equivalent circuit of BJT at high frequency and derive the expression for upper cut-off frequency.
 - (b) Discuss the higher and lower frequency response of RC coupled amplifier. Explain the effect of coupling and bypass capacitor on the bandwidth of an amplifier.
 - (c) List five characteristics of an amplifier, which are modified by negative feedback. Derive expression for the effective input and output resistance of current series feedback topologies.
- 3. Attempt any two parts of the following: $(10\times2=20)$
 - (a) What are the Barkhausen conditions required for sustained sinusoidal oscillation? Sketch the circuit of a Wein bridge oscillator and derive the expression for frequency of oscillation.
 - (b) Explain with the circuit diagram the working of a transistor RC phase shift oscillator and derive the condition for sustained oscillations.
 - (c) (i) Discuss how does the circuit of a Clapp oscillator differ from that of a Colpitt oscillator.
 - (ii) Explain the properties of a quartz crystal which are responsible for its use in an oscillator.

- 4. Attempt any two parts of the following: (10×2=20)
 - (a) Sketch the circuit diagram for universal shift register and explain its working.
 - (b) (i) Implement the following Boolean function using 8×1 multiplexer: $F(A,B,C,D) = \sum m(2,4,5,7,10,14).$
 - (ii) Design a four bit synchronous up counter using J-K flip flop.
 - (c) (i) Explain the working of SR flip flop using NAND gates.
 - (ii) Discuss Race around condition of J-K flip flop. Show how this condition can be removed.
 - 5. Attempt any two parts of the following: (10×2=20)
 - (a) Design and explain a circuit diagram for a stable multivibrator having 50% duty cycle using IC 555.
 - (b) Enlist the various types of analog to digital (A/D) converter. Explain the operation of R-2R ladder type digital to analog (D/A) converter with a neat sketch.
 - (c) Write short notes on the following:
 - (i) Series type voltage regulator
 - (ii) Sequential memory.