Printed Pages: 02 Subject Code: REC301

Paper Id 0 | 1 |

Roll No.

B TECH (SEM-III) THEORY EXAMINATION, 2018-19 DIGITAL LOGIC DESIGN

Time: 3 Hours

Max. Marks: 70

Note: Be precise in your answer. In case of numerical problem assume data wherever not provided.

SECTION-A

1. Attempt all of the following questions:

 $(2 \times 7 = 14)$

- (a) What is modulus of a counter?
- (b) How many flip flops are required to design Mod-5 Ring counter and Mod-5 Johnson counter?
- (c) Determine the value of base x, if: $(193)_x = (623)_8$
- (d) Write the advantage of Gray code over the straight binary number sequence.
- (e) What do you mean by fan-out and fan-in?
- Define cyclic codes.
- (g) What is race around condition?

SECTION-B

2. Attempt any three of the following questions:

 $(7 \times 3 = 21)$

- (a) Minimize the following Boolean function using K- map. $F(A, B, C, D) = \sum (3,4,5,7,9,13, 14,15)$
- (b) Minimize the following using Quine- McCluskey method: $F(A, B, C, D) = \sum (0.1, 9.15, 24, 29, 30) + \sum d(8, 11, 31)$
- (c) Write short notes on priority encoder.
- (d) Implement the following Boolean function:

 $F(A, B, C, D) = \sum (0, 1, 3, 4, 7, 8, 9, 11, 14, 15)$ using (II) 2:1 MUX

(e) Design Binary code to Gray code converter.

SECTION - C

3. Attempt any one of the following questions:

 $(7 \times 1 = 7)$

- (a) (i) Draw a BCD adder circuit and explain its working.
 - (ii) Convert the SR Flip Flop to JK Flip Flop.
- (b) What do you mean by shift register? What is the need of shift register? Draw and explain bidirectional shift register.

4. Attempt any one of following questions:

 $(7 \times 1 = 7)$

- (a) (i) Design a modulo-4 UP/DOWN counter using JK flip flop.
 - (ii) Design a upple decade counter using JK flip flop.
- (b) (i) What is critical race and non-critical race? How can they be avoided?
 - (ii) Describe the hazards in digital circuits. How are these removed? Design a hazards free circuit of the following Boolean function:

 $F(A, B, C) = \sum m(1, 2, 3, 5)$

5. Attempt any one of following questions:

 $(7 \times 1 = 7)$

- (a) (i) Describe the circuit and performance of CMOS inverter and state the characteristics of
 - (ii) Differentiate between PLA and PAL. Realize the full adder circuit using PAL.
- (b) (f) Discuss the concept of field programmable gate array (FPGA). Discuss the various
 - (ii) Tabulate the truth table for 8×4 ROM that implements the Boolean function:

 $A(x, y, z) = \sum (1, 2, 4, 6)$ $B(x, y, z) = \sum (0, 1, 6, 7)$ $C(x, y, z) = \sum_{i=1}^{n} (2, 6)$ $D(x, y, z) = \sum (1, 2, 3, 5, 7)$

6. Attempt any one of following questions:

 $(7 \times 1 = 7)$

(a) An asynchronous sequential logic circuit is described by the following excitation and output function

$$y = X_1X2 - (X1 - X2) Y$$

 $Z = y$

- (i) Draw the logic diagram of the circuit
- (ii) Derive the transition table and output map
- (iii) Describe the behavior of the circuit
- (b) (i) The code 101101010 is received correct any errors. There are four parity bits and odd parity is used.
 - (ii) Draw a full subtractor circuit using NAND gate

7. Attempt any one of following questions:

 $(7 \times 1 = 7)$

(a) Drive the state table and state diagram for the Sequential circuit shown in fig,

(b) Draw the reduced state table and reduced state diagram for the state table given below:

