

Printed Pages: 4

EEC303

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 0324 Roll No.

B. Tech

(SEM III) ODD SEMESTER THEORY EXAMINATION 2009-10 ELECTROMAGNETIC FIELD THEORY

Time: 3 Hours]

[Total Marks: 100

- Note: (1) Attempt all questions.
 - (2) All questions carry equal marks.
- Attempt any four parts of the following: 1
 - (a) Express vector $\overline{B} = \frac{10}{r} a_r + r \cos \theta \ a_\theta + a_\phi$ cartesian coordinates.
 - (b) Given point P(-2, 6, 3) and vector $\overline{A} = ya_x + (x+z)a_y$. Express P and \overline{A} in spherical system.
 - (c) Explain the gradient of a scalar field.
 - (d) State and explain the divergence theorem.
 - (e) Given $\overline{A} = 5a_{\overline{x}} 2\overline{a}_{y} + \overline{a}_{z}$, find the expression of a unit vector \overline{B} such that $\overline{B} \parallel \overline{A}$.
 - (f) State and explain the Stokes theorem.

Manufactures

Ma JJ-03241 uptuonline.com

[Contd...

Ź

- Attempt any four parts of the following: (a) The cable shown in Fig. 1, is 10 km long. If
 - $r_1 = 10 \text{ mm}, r_2 = 15 \text{ mm}, r_3 = 20 \text{ mm}, \in r_1 = 2.0,$ $\in r_2 = 4.0$. Find the capacitance of the cable.

Fig. 1

A/m², find the current passing through a sphere radius of 1.0 m. If a potential $V = x^2yz + Ay^3z$, (i) find A so that (c)

If the current density $J = \frac{1}{r^2} (\cos \theta a_r + \sin \theta a_\theta)$,

- Lapace's equation is satisfied (ii) with the value of A, determine electric field at (2, 1, -1)
- (d) State and explain the poisson's and Laplace's equation.
- (e) State and explain the coulomb's law.
- A sphere of volume 0.1 m³ has a charge density of (f) 8.0 pc/m³. Find the electric field at a point (2, 0, 0)if the centre of the sphere is at (0, 0, 0).

JJ-03241

(b)

[Contd...

Attempt any two parts of the following:

(a) State and explain the Biot-Savrat law. What is the

3

magnetic field, H in cartesian coordinates due to Z-directed current element? Find J if I = 2 A.

(b) State and explain the Stokes theorem. When vector magnetic potential is given by

 $A = \frac{1}{r^3} (2.0 \cos \theta \, \alpha_r + \sin \theta \, \alpha_\theta), \text{ find the magnetic}$ flux density.

(c) An isotropic material has a magnetic susceptibility of 3 and the magnetic flux density, $B = 10ya_x$ mwb/m². Determine μ , ρ_n , J, M and H. Define inductance, mutual inductance and coefficient of co-upling.

(a) State and explain the Maxwell's equation in differential and integral form. Also define the displacement currrent and depth of penetration.

Attempt any two parts of the following:

- (b) Derive the relation between \vec{E} and \vec{H} in uniform plane wave.
- (c) Derive the expression for α and β in a conducting medium.

(a)

- 5 Attempt any two parts of the following:
 - 75 Ω lossless transmission line of length 0.1 λ.
 when the load is a short.
 (b) The short circuit and open circuit impedance of

By using Smith chart, find the input impedance of

- (b) The short circuit and open circuit impedance of 10 km long open wire transmission line are Z_{sc} = 2930 ∠ 26° and Z_{oc} = 260 ∠ -32° at frequency of 1 kHz. Calculate the characteristics impedance and phase velocity.
 (c) Define reflection loss, transmission loss and return
- loss. The 600 Ω lossless transmission line is feeded by 50 Ω generator. If the line is 200 meter long and termintated by load 500 Ω . Determine in db (i) reflection loss (ii) Transmission τ^{1} as (iii) return loss.