uptuonline.com

Printed Pages—4

EEC303

(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 0324 Roll No.

B.Tech.

(SEM. III) THEORY EXAMINATION 2011-12

ELECTROMAGNETIC FIELD THEORY

Time: 3 Hours

Total Marks : 100

Note: -(1) All questions carry equal marks.

- (2) Attempt all questions.
- 1. Attempt any four parts of the following: $(5\times4=20)$
 - (a) Given vector field $G = 8 \sin \varphi \ a_r$ in spherical coordinate Transform it into:
 - (i) Rectangular Coordinate
 - (ii) Cylindrical Coordinate
 - (b) Find the gradient of the following scalar field
 - (i) $V = e^{-z} \sin 2x \cosh y$
 - (ii) $U = P^2 Z \cos 2\phi$
 - (c) Derive expression for electric field due to infinitely long wire.
 - (d) Write down the expression/statement of the:
 - (i) Maxwell's curl equation for time varying field.
 - (ii) Differential form of Ampere's law.

(e) Given a vector function:

$$\overline{A} = (3x+4z) \overline{a}_x + (c_2x-5z) \overline{a}_y + (4x-c_3y+c_4z) \overline{a}_z$$

Calculate c_1 , c_2 , c_3 , c_4 if \overline{A} is irrotational and solenoidal.

- (f) A charge distribution with spherical symmetry has density $\rho_v = \rho_0 \, r/R, \ 0 \le r \le R \ \text{and} \ 0 \ \text{for} \ r \ge R, \ \text{Determine} \ E$ everywhere.
- 2. Attempt any two parts of the following: $(10 \times 2 = 20)$
 - (a) Derive Energy density in electrostatic field. A sphere of volume 0.1 m³ has a charge density of 8.0pc/m³. Find the electric field at a point (2,0,0) if the centre of the sphere is at (0,0,0).
 - (b) State and explain the Coulomb's law. If the current density $J=1/r^2 (\cos \theta \ a_r + \sin \theta \ a_\theta)$. A/m², find the current passing through a sphere of radius 1.0 m.
 - (c) Discuss the relevance of uniqueness theorem. A spherical condenser has capacity of 54 pF. It consist of two concentric sphere differing in radius by 4 cm and having an air as dielectric. Find their radii.
- 3. Attempt any four parts of the following: $(5\times4=20)$
 - (a) Write down the boundary condition for current density and postulates of Magnetostatics in free space.
 - (b) Prove that B = $(\mu_0 I_b^2/4R^3)$ $(a_R^2 \cos \theta + a_\theta \sin \theta)$ for magnetic dipole.

- (c) Given that $H_1 = -2a_x + 6a_y + 4a_z$ A/m in region $y-x-2 \le 0$ where $\mu_1 = 5\mu_0$ calculate M_1 and B_1 .
- (d) Find inductance of coaxial cable.
- (e) Explain the relevance of Magnetic scalar and vector potential.
- (f) In a material for which σ =5 S/m and ϵ_r =1, the electrical field intensity is E=250 sin 10¹⁰t V/m. Find conduction and displacement current densities and the frequency at which both have equal magnitude.

4. Attempt any **two** parts of the following: $(10 \times 2 = 20)$

- (a) Derive the expression for α and β in a conducting medium. Explain skin effect and depth of penetration.
- (b) Derive the wave equation for conducting media. A uniform plane wave is propagating in the $\pm z$ direction in a good conductor having conductivity σ S/m. The permittivity and permeability In the conductor are the same as in free space and the electric field is xE_0 at z=0. What power (W/m²) is dissipated in this medium foe z>0? Assume $\sigma \gg \omega \epsilon$.
- (c) Derive Faraday law of induction. Explain the concept of Transformer and motional electromotive force. Discuss the relevance of Anisotropic media.

- 5. Attempt any two parts of the following: $(10\times2=20)$
 - (a) Discuss the structure of Smith Chart. How it is used for measurement of impedances and VSWR?
 - (b) Relate short circuit, open circuit and characteristic impedance of Transmission line. The short circuit and open circuit impedance of 10 km long open wire transmission line are $Z_{\rm sc}$ =2930 \angle 26° and $Z_{\rm oc}$ =260 \angle -32° at a frequency of 1 kHz. Calculate the characteristics impedance and phase velocity.
 - (c) Define reflection loss, transmission loss and return loss. The 600 Ω lossless transmission line is fed by 50 Ω generator. If the line is 200 meter long and terminated by load 500 Ω . Determine in db
 - (i) Reflection loss
 - (ii) Transmission loss
 - (iii) Return loss.