Printed Pages - 4

TEC-303

(Following Paper ID and Roll No. to be filled in your Answer Book)							
PAPER ID:3075	Roll No.						

B.Tech.

THIRD SEMESTER EXAMINATION, 2006 - 07

ELECTRONICS MEASUREMENTS AND INSTRUMENTATION

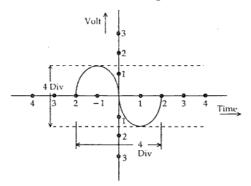
Time: 3 Hours Total Marks: 100

- Note: (i) Attempt ALL questions.
 - (ii) All questions carry equal marks.
 - (iii) In case of numerical problems assume data wherever not provided.
 - (iv) Be precise in your answer.
- 1. Attempt *any two* parts of the following: (10x2=20)
 - (a) (i) Explain the Dynamic-characteristics of instruments.
 - (ii) A 600 V voltmeter is specified to be accurate within ±2.5% at FSD. Calculate the limiting error when the instrument is used to measure a voltage of 400 V.
 - (b) Why and how thermocouples are connected in series and parallel? Write down the advantages and disadvantages of thermocouples.

- (c) Draw a circuit of true RMS meter and explain its working.
- 2. Attempt any two parts of the following: (10x2=20)
 - (a) Which property of the thermistor makes it suitable to act as a transducer?
 - (b) An AC LVDT has the following data :

Input =
$$6.3 \text{ V}$$
 Output = $\pm 0.5 \text{ in}$

Find the output voltage Vs core-position for a core movement going from +0.5 inch to -0.3 inch. Also calculate the output voltage when the core is -0.25 inch from the centre.


- (c) Prove that schering bridge can be used to measure the insulating properties and values of capacitance with high precision.
- 3. Attempt any two parts of the following: (10x2=20)
 - (a) (i) Define 'Resolution' and sensitivity of Digital Meters.
 - (ii) A $4\frac{1}{2}$ Digit Voltmeter is used to measure voltage. Find:
 - Resolution
 - 2. How would 16.58 would be displayed on a 10V range?
 - 3. How would 0.7254 be displayed on 1V and 10 V range?

(b) Draw the block diagram and its working of an integrating type DVM.

An integrator has a 100 k Ω and 1 μ F capacitor. If the voltage applied to integrator input is 1V, find the voltage developed at the output after 1 sec. If the reference voltage is applied to the integrator at time t_1 , is 5V, find time interval of t_2 . $t_1 \rightarrow R$ is e-time of reference voltage waveform at output of integrator.

 $t_2 \rightarrow Fall$ -time of reference voltage waveform.

- (c) Explain the theory of LCD displays. Compare LCD displays with LED displays.
- 4. Attempt *any two* parts of the following: (10x2=20)
 - (a) Differentiate between double beam CRO and Dual-Trace CRO in detail.
 - (b) State the function and explain the working of a 10:1 probe for a CRO.
 - (c) The waveform shown below is observed on the screen of an oscilloscope.

If the vertical attenuation is set to 0.5 V/Div, determine the peak to peak amplitude of the signal. If the time/Div control is set to $2\mu s/\text{Div}$, determine the frequency of the signal.

- 5. Attempt any two parts of the following: (10x2=20)
 - (a) Explain the working of a Pulse Generator. What are specific requirements of pulse output?
 - (b) How are broadband sweep frequencies generated in a sweep generator?
 - (c) Explain working and application of marker generators.

- o O o -