(Following Paper ID and Roll No. to be filled in your Answer Book)

PAPER ID: 3073 Roll No.

B.Tech.

THIRD SEMESTER EXAMINATION, 2006-07

SOLID STATE DEVICES AND CIRCUITS

Time: 3 Hours

Total Marks: 100

10,000 . 0 11000.

Note:

- (i) Attempt ALL questions.
- (ii) All questions carry equal marks.
- (iii) In case of numerical problems assume data wherever not provided.
- (iv) Be precise in your answer.
- 1. Attempt any four parts of the following: (5x4=20)
 - (a) Why is Schottky barrier diode called hot carrier diode? How is it different from that of a signal diode?
 - (b) Explain how light signal is converted into electrical signal in a photo diode?

Why CC configuration is called a voltage buffer?

- What is its other name?
- (d) Draw and explain the Ebers-Moll model.
- (e) the mend explain a ficharacteristics of a Tunnel diode.

TEC - 301

uptuonline.com

(c)

0294

1

[Turn Over

- (e) Enlist and draw the basic configuration of single stage MOS amplifier. Explain its working.
- (f) Show that $gm = \frac{2I_D}{V_{GS} V_t}$ in a MOSFET
- 3. Attempt any two parts of the following: (10x2=20)
 - (a) What are the values of coupling capacitors C_{C1} and C_{C2} and bypass capacitor C_S of the circuit of figure 3 so that the low frequency response will be dominated by a pole at 100 H₂ and that the nearest pole or zero will be atleast a decade away. Also determine the midband gain.

- (b) (i) State Miller Theorem.
 - (ii) Using Miller's Theorem find the Input resistance of the resulting circuit of feed back amplifier. Consider a high frequency response of a common emitter amplifier with a voltage gain 0.97 V/V and a resistance $R = 100 \text{K}\Omega$ connected in the feedback path.

(f)

(b)

uptuonline.com

emitter amplifier shown in figure 1. Draw the

load line and find its slope.

Attempt any four parts of the following: (5x4=20)2. Explain the working of BJT as a switch. (a)

Figure 1

and base emitter junction capacitance on BJT characteristics.

Explain the effect of base-charging capacitance

Find the value of R and Vn. The N.MOS

- Draw and explain complete hybrid π model of (c) BJT.
- For the circuit shown in figure 2. $I_D = 0.4$ mA. (d)
 - Transistor has $V_t = 2V$, $\mu_n \cos x = 20 \mu A/V^2$, $L = 10 \mu m$, and $W = 100 \mu m$, $\lambda = 0$. $V_{DD} = +10V$ Figure 2

uptuonline.com

(c) An amplifier with a low frequency gain of 100 and poles at 10^4 and 10^6 rad/s is incorporated in a negative feed back factor β . For what value of β do the poles of the closed loop amplifier coincide? What is the corresponding Q of the resulting second order system? For what value of β is a maximally flat response achieved?

5. Attempt any two parts of the following: (10x2=20)

- (a) Draw the circuit of a clapp oscillator and derive the expression of its frequency of oscillation.
- (b) What are advantages of a crystal oscillator? Draw the equivalent circuit of a piezoelectric crystal and show how its impedance varies with frequency.
- (c) Obtain the frequency of oscillation of the LC oscillator shown in Fig. 5. The BJT has very large
 β. Also obtain the condition of oscillation.

-000-