- (i) The direction of wave propagation
- (ii) $\lambda, f, \varepsilon_r$
- (iii) \overline{H}
- (c) Explain the plain wave in good conductor.

—X—

Printed Pages:4

435

NEC-404

(Following Paper ID and PAPER ID: 131403	No.	to	be	filled	in	your	Answer	Book)
Roll No.	1							

B.Tech. IV Sem.

SPL. THEORY EXAMINATION, 2014-15 ELECTROMAGNETIC FIELD THEORY

Time: 2 Hours

[Total Marks: 50

Note: Attempt all questions. Each question carries equal marks.

- 1. Attempt any four of the following:
- $3.5 \times 4 = 14$
- (a) Explain the spherical coordinate system.
- (b) Explain the gradient of a scalar field. Show that the gradient of a scalar is a vector.
- (c) Calculate the areas of the following surfaces using the differential surface area ds:

(i)
$$\rho = 2$$
, $0 < z < 5$, $\pi/3 < \phi < \pi/2$

$$z = 1, 1 < \rho < 3, 0 < \phi < \pi/4$$

- (d) Find the volume cut from the sphere radius r=a by the cone $\theta = \alpha$. Calculate the volume when $\alpha = \pi/3$ and $\alpha = \pi/2$.
- (e) If $U = xz x^2y + y^2z^2$, evaluate divgrad U.
- Given $\phi = xy + yz + xz$, find gradient ϕ at point (1,2,3) and the directional derivative of $\boldsymbol{\phi}$ at the same point in the direction towards point (3,4,4).
- Attempt any two of the following: 2.

6x2=12

[Contd...

(a) Let

$$\rho_{v} = \begin{cases} \left(\frac{10}{r^{2}}\right), \frac{mc}{m^{3}} & 1 < r < 4 \\ 0, & r > 4 \end{cases}$$

Find the net flux crossing surface r=2m and r=6m.

- (b) At the centre of hollow dielectric sphere $(\varepsilon = \varepsilon_0 \varepsilon_r)$ is placed a point charge Q. If the sphere has inner radius a and outer radius b, calculate \overrightarrow{D} , \overrightarrow{E} and \overrightarrow{P} .
- Explain the method of images.

3. Attempt any two of the following: 6x2=12

- (a) Explain the Scalar and Vector potentials.
- (b) A rectangular coil of area 10cm² carrying current of 50A lie on plain 2x+6y-3z=7 such that the magnetic moment of the coil is directed away from the origin. Calculate its magnetic moment.
- Given that:

$$\overline{H_1} = -2a_x + 6a_y + 4a_z A / m$$

in region $y-x-2 \le 0$, where $\mu_1 = 5\mu_0$, calculate :

- $\overline{M_1}$ and $\overline{B_1}$
- (ii) $\overline{H_2}$ and $\overline{B_2}$ in region $y-x-2 \ge 0$.

where
$$\mu_2 = 2\mu_0$$
.

4. Attempt any two of the following:

6x2=12

- (a) Explain Maxwell's equation in differential and Integral form.
- (b) A plain wave in a non-magnetic medium has

$$\overline{E} = 50\sin(10^8t + 2z)a_v V/m$$

Find:

1314031

(3)

[Contd...