	41		
Roll No.			

No. of Printed Pages-5

Time: 3 Hours

EC-401

B. TECH.

FOURTH SEMESTER EXAMINATION, 2002-2003

ELECTROMAGNETIC FIELD THEORY

Note: (1) Attempt ALL the questions.

Total Marks: 100

(2) All questions carry equal marks.

(L) I'm questions early equal manifes

- 1. Attempt any FOUR of the following :— $(5\times4=20)$
 - (a) What do you mean by Scalar and Vector Fields? Show the difference between the two.
 - (b) What is the importance of surface integral with reference to electromagnetic fields? Explain with one example. Use the cylindrical co-ordinate system to find the area of a curved surface on the right circular cylinder of radius 2 m, height 8 m and $45^{\circ} < \Phi < 90^{\circ}$.
 - (c) What is Stokes' Theorem ? State and prove it.
 - (d) What is Gauss's Law? State and prove it.
 - (e) State Divergence Theorem and physically interpret the equivalence of the L.H.S. and the R.H.S. terms.
 - (f) Find the rate at which the Scalar function $V = r^2 \sin 2\Phi$ increases in the
 - (i) Z direction
 - (ii) Φ direction. Evaluate it at r = 2 m and $\Phi = 45^{\circ}$.

- 2. Attempt any FOUR of the following :— $(5\times4=20)$
 - (a) Discuss the method of images to plain boundaries problems.
 - (b) What is understood by boundary conditions in static electric field? Why are the equipotential surfaces perpendicular to the electric flux lines?
 - (c) Three capacitors C_1 , C_2 and C_3 are charged (as shown in fig. 1) by a voltage source V by closing the switch S.

Fig. 1

Will the charge on the plates of the capacitors be

- (i) equal or
- (ii) non-equal?

Explain your answer physically.

- (d) If V = x y + xy + 2z volts, then find the electrostatic energy stored in a cube of side 2 m centered at the origin.
- (e) Consider two concentric spheres of radii a and b, a < b. The outer sphere is kept at a potential V_0 and the inner sphere at zero potential. Solve Laplace's equation in spherical co-ordinates to find the potential and electric field in the region between the two spheres.

(*f*) Find the capacitance of the system shown in fig. 2.

Fig. 2

The length of each conducting plate is L.

- 3. Attempt any TWO of the following :— $(10 \times 2 = 20)$
 - (a) How is magnetic flux density related to the magnetic vector potential? Find out the magnetic vector potential in the vicinity of a very long straight wire carrying a current I. Hence find the magnetic field strength.
 - (b) (i) Show that the stored energy density in a magnetic field of strength H is $\frac{1}{2} \mu H^2$.
 - (ii) Explain the Faraday's Law of Induction.
 - (c) Prove that the normal component of B is continuous across a boundary between two isotropic and homogeneous materials with permeabilities μ_1 and μ_2 . What can be said about Hn_1 and Hn_2 in the above case ?

Fig. 3

In, fig. 3 shown above

 $B_1 = 2 Ux - 3 Uy + 2 Uz$, is incident on the xy plane (z = 0). The medium at z > 0 has $\mu_1 = 4 \mu_0$ and z < 0 has $\mu_2 = 7 \mu_0$. Find B_2 .

Ux, Uy and Uz indicate unit vectors in the respective directions.

- 4. Attempt any TWO of the following :— $(10 \times 2 = 20)$
 - (a) Derive the equation of continuity for time varying fields and point out the inconsistency of Ampere's law for time varying fields.
 - (b) A uniform plane wave, moving in free space is given by $E_v = 50 \cos (10^8 t + \beta x)$.
 - (i) Find the direction of propagation.
 - (ii) Calculate β .
 - (iii) Find time it takes to travel a distance $\frac{\lambda}{2}$.
 - (iv) Find expression for magnetic intensity.

EC-401

(c) What is understood by polarization of EM waves? Explain linear, elliptical and circular polarization with appropriate figures.

Show that a linearly polarised wave can be interpreted as a combination of two circularly polarised waves of equal magnitude and angular velocities, rotating in opposite directions.

- \sim 5. Attempt any TWO of the following :— (10×2=20)
 - (a) Derive expressions for sending end-voltage and current along a transmission line in terms of receiving end-quantities for a lossless line.
 - (b) What are the techniques used for impedance matching on transmission lines? Discuss one technique in detail.
 - (c) A telephone line has

$$R = 30 \Omega / \text{km}$$

$$L = 100 \text{ mH/km}$$

$$G = 0$$

$$C = 20 \,\mu F / \text{km}$$
 at 1 KHz.

Obtain

- (i) the characteristic impedance of the line,
- (ii) the propagation constant.