No. of Printed Pages—2

EC-401

B. TECH.

FOURTH SEMESTER EXAMINATION, 2003-2004

ELECTROMAGNETIC FIELD THEORY

Time: 3 Hours

Col Page Total Marks: 100 Note: (1) Attempt ALL questions (FIVE).

- (2) All questions carry equal marks.
- Attempt any *FOUR* parts of the following :— $(5\times4=20)$ 1.
 - (a) Differentiate between Scalar and Vector fields.
 - What is ∇ . Represent the cross product of it (b) with a vector field in spherical coordinate system.
 - Represent the dot product of ∇ with vector (c) field in cylindrical coordinate system.
 - Give the physical interpretation of gradient, (d) divergence and curl of a vector field.
 - (e) Discuss the Gauss's law and its application.
 - (f) Discuss the Stokes' theorem and its application.
- Attempt any TWO parts of the following :— $(10 \times 2 = 20)$ 2.
 - Discuss the method of images applied to (a) plain boundaries.
 - (b) Explain the electric flux density and electrostatic energy.
 - Discuss the solution of Poisson's and (c) Laplace's equation in one dimension.

EC-401

- 3. Attempt any TWO parts of the following:— * (10×2=20)
 - (a) Discuss the boundary condition for electric field.
 - (b) Discuss the boundary condition for magnetic field.
 - (c) Discuss the energy stored in electric and magnetic fields.
- 4. Attempt any TWO parts of the following :— $(10 \times 2 = 20)$
 - (a) State and prove Maxwell's equations and give their physical interpretation.
 - (b) Derive the complex Poynting theorem and explain the transmitter and receiver action.
 - (c) Discuss the solution of plane wave equation in conducting and non-conducting media.
- 5. Attempt any TWO parts of the following :— $(10 \times 2 = 20)$
 - (a) Discuss the distortion-less transmission line.
 - (b) Discuss impedance matching and $\frac{A}{4}$ transformer.
 - (c) Discuss input and characteristic impedance of a transmission line.