EEC509

(Following Paper ID and Roll No	to be filled in your Answer Book)
PAPER ID: 2115 Roll No.	

B.Tech.

(SEM. V) THEORY EXAMINATION 2012-13

ANALOG INTEGRATED ELECTRONICS

Time: 3 Hours

Total Marks: 100

Note: (1) Attempt all questions.

(2) All questions carry equal marks.

- 1. Attempt any two parts of the following: (10×2=20)
 - (a) Draw the frequency response of internally compensated OPAMP having pole within the feedback loop and explain it.
 - (b) What are different methods for pole compensation in uncompensated OPAMPs? Discuss Miller Compensation.
 - (c) For the OPAMP circuit shown in Figure 1:

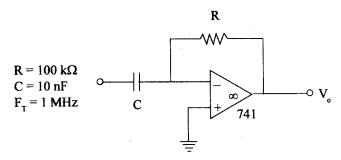


Figure 1

Calculate f_0 , f_v , Q and ϕ_m .

EEC509/DLT-44165

1

[Turn Over

- 2. Attempt any two parts of the following: $(10\times2=20)$
 - (a) Draw the circuit diagram of Grounded load voltage to current converter and find the expression of output current.
 - (b) Enumerate the requirement of an instrumentation Amplifier. Find the expression for output voltage in terms of input voltages as shown in Figure 2:

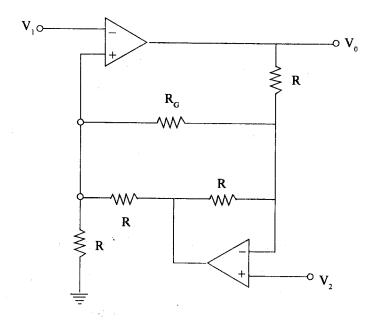


Figure 2

(c) Draw the circuit diagram of a non-inverting integrator and find the expression for output voltage.

EEC509/DLT-44165

2

- 3. Attempt any two parts of the following: $(10\times2=20)$
 - (a) For the filter shown in Figure 3 show that the critical

frequency is given by
$$\frac{1}{\sqrt{R_1C_1 R_2C_2}}$$
.

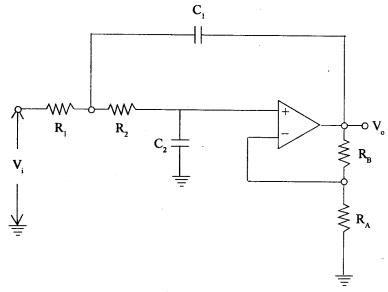


Figure 3

- (b) Draw the circuit diagram of a All Pass Filter and show that phase is given by $\varphi = -2 \tan^{-1} 2\pi fRC$.
- (c) Draw the functional block diagram of voltage to frequency converter (VCO) and find the expression for free running frequency.
- 4. Attempt any two parts of the following: (10×2=20)
 - (a) Draw the circuit diagram of a Triangular waveform generator and find the mathematical expression for frequency Triangular waveform.

EEC509/DLT-44165

3

[Turn Over

- (b) Draw the circuit diagram of a precision full wave rectifier and mathematically prove that the output is full wave rectified.
- (c) Compare Linear regulator and switching regulator. Draw the block diagram of switching regulator and explain its working.
- 5. Attempt any two parts of the following: (10×2=20)
 - (a) Draw the circuit diagram of a two OPAMP '2g Amplifier and the expression for its output.
 - (b) Define Lock-in-Range, capture range and pull in-time as related to a phase locked loop (PLL). Draw the block diagram of the PLL and explain its working.
 - (c) Write short note on operational transconductance Amplifier.

2925 s

EEC509/DLT-44165